

ISSF 2010

Spent Nuclear Fuel Management in Spain

Pablo Zuloaga, Javier Fernandez

Introduction

Ministry of Industry, Tourism and Commerce

- Radioactive waste, decommissioning and NSF management policy
 - · Cabinet approved "6th Radioactive Waste General Plan" 2006
- Grants Licenses of Nuclear Installations

Nuclear Safety Council

- Independent from the Government
 - Nuclear safety and radiological protection regulation and guidance
 - Evaluation and reporting previously to Licenses
 - Inspection and enforcement

ENRESA

- Management of spent fuel and radioactive waste
- Nuclear installations decommissioning as well

NPP / Utilities

- Operate on site storage
- Deliver the SF and waste packages in accordance to WAC
- Pay the costs through fees on nuclear energy generation

NPP location and NSF situation

- 10 Nuclear Power Reactors
- 8 reactors in operation in 6 sites
 - 7.8 GWe
 - 19% of country's electricity generation
- 2 NPP shut down, being decommissioned

NSF and HLW-MLW Inventory and estimates

Present Inventory

- 4000 tU SF in storage (December 2009)
 - Most of it in pools
 - 2 ISFSI in operation (dry-storage)
 - Trillo NPP

 dual purpose metal casks indoor
 - Jose Cabrera NPP → concrete casks on a pad outdoors
 - Ascó NPP is in the licensing process for another ISFSI → similar to Jose Cabrera ISFSI

Total amount of Spent fuel considered

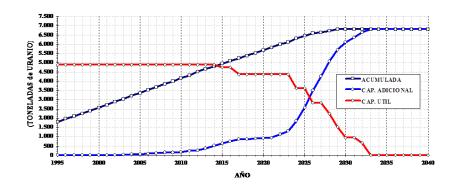
- 20000 Fuel elements
- 6700 tU

HLW and MLW management

- HLW (vitrified waste canisters)
- Medium Level (long-lived) waste packages
 - Around 650 m3 from reprocessing
 - Around 1000 m3 to be generated in decommissioning reactor internals

General aspects of NSF management

- The priority is the Centralized Interim Storage Facility (ATC)
 - Complemented by In situ Increased Storage capacity when required
- Deep Geological Disposal studies continuation to support decision making about management options
- Other options also studied: advanced cycles
- R&D Plan 2009-2013
- Costs supported by the NPPs as a fee on nuclear electricity gross production
- Direct disposal considered as an assumption for financing the waste management fund



In situ storage capacity increase

- · Re-racking of all NPP's in previous actuations
- Second re-racking of Cofrentes NPP in 2009
- Dry storage at Trillo NPP
 - ENSA DPT Dual purpose casks
- Dry storage at Jose Cabrera NPP
 - HI STORM system
 - Total fuel inventory
- Dry storage at Ascó NPP
 - HI STORM system
 - Number of casks will depend on ATC Commissioning

Independent SF storage Facility at Trillo NPP

Agreement between ENRESA and Utility

- ENRESA licensed the system
- Trillo NPP licensed the facility as part of the NPP

Storage Casks System

- Dual purpose metal casks. ENSA DPT
- 21 fuel elements per cask
- Non encapsulated
- Re-licensed from 45 to 49 GWd/tU

ISFSI Commissioned in 2002

- Dedicated building to meet NPP dose rate design criteria
 - Capacity for 80 casks
- 18 casks stored
 - 378 fuel assemblies

Independent SF storage facility at Jose Cabrera NPP

- Similar scheme as in Trillo NPP
 - Agreement ENRESA-Utility
- HI STORM system
 - MPC Multipurpose canisters
 - Shielding modules HI STORM
 - Transfer cask HI TRAC
 - Transport cask HI STAR
- Storage pad for 12 modules + 4 modules for Decommissioning wastes
- 100% fuel inventory transferred
 - 377 fuel assemblies (100.5 tU)

ATC. The Centralized SNF and HLW storage facility project

- Defined as a priority in the 6th General radioactive Waste Plan
- Parliament supported:
 - In 2004, Industry Commission of the Parliament unanimously asked the Government to develop ATC facility
 - In 2006, the Parliament urged the Government to set an Inter-Ministerial Commission to lead the site selection process
- Site selection process in progress.
 - Launched in December 2009 with a decree establishing minimum criteria and how to proceed.
 - Technical report released in September 2010 pre-characterizing the eight (8) final candidates' sites:
 - Meteorology
 - •Geology
 - Communications and logistics
 - ·Social issues: economic impact, social acceptation, etc.

•...

ATC. The Centralized SNF and HLW storage facility project

Advantages:

- Unification of SF management
- Independence between short-term and long-term management
- Flexibility
- Minimization of the total number of nuclear installations
- Efficiency for reaching safety and security levels
- Possibility to release decommissioned nuclear sites
- Respect of international engagements
- Cost reduction
- Optimization of support services and operations

ATC. The Centralized SNF and HLW storage facility. Main parts

- Three main parts
- The Centralized Interim Storage Facility (ATC) itself
 - Unloading and encapsulation
 - SF/HLW storage
 - MLW storage
- A Research Center
 - Spent fuel and waste laboratory
 - Other laboratories (chemistry and environment, materials, prototypes...)
- A Business park
 - Regional development project
 - Infrastructure for companies settlement in the area

ATC. The Centralized SNF and HLW storage facility. Site selection process

Siting based on volunteer candidate municipalities:

- Principles of publicity, participation and transparency.
- Volunteer municipalities: candidature approved by the Local Council

Creation of an inter-ministerial Commission to:

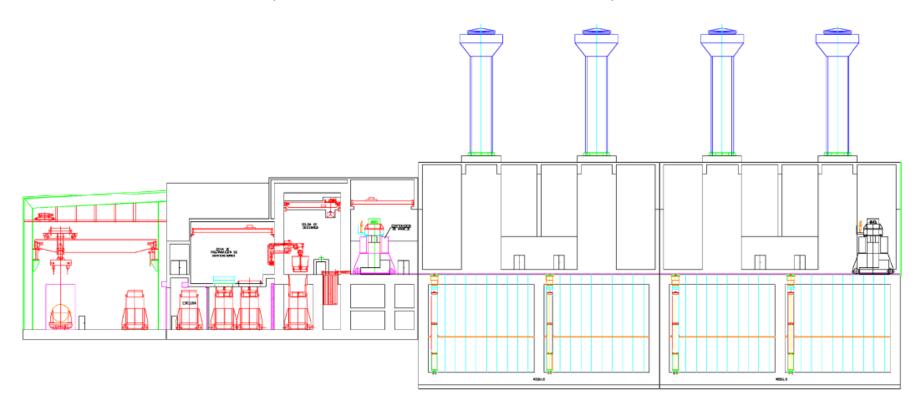
- Defining the technical and social criteria for municipalities candidate to host the facility
- Supervising the respect to the siting process criteria
- Managing the information and candidatures reception
- Assessing and Proposing to the Government suitable sites in candidate municipalities

• Information campaign 2006-2008

Call for candidate municipalities in December 2009

- Excluded areas report published in April 2009. Site proposal
- Potential sites in eight municipalities are being studied

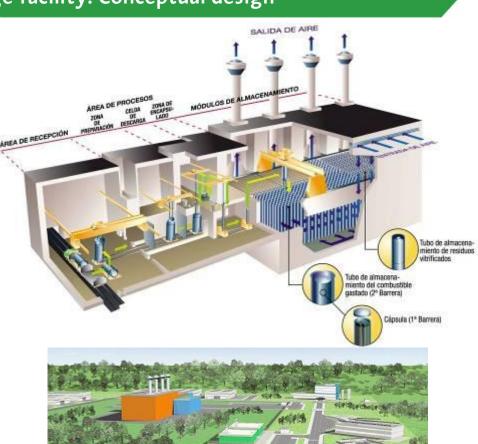
Pre-characterization of sites released in September 2010


The Government will decide the site

- Dialog with the suitable candidate local councils
- Dialog with Region Government

ATC. The Centralized SNF and HLW storage facility. Functions

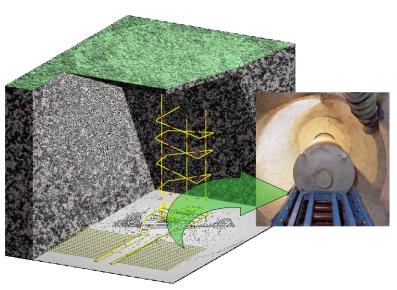
- The ATC facility is designed for the following functions:
 - Reception and unloading.
 - Encapsulation of fuel assemblies.
 - Long-term Storage of SNF and waste packages
 - Retrieval of waste packages for future management options.



ATC. The Centralized SNF and HLW storage facility. Conceptual design

Vault type:

- Spent Fuel and HLW encapsulated in canisters
- Canisters placed in storage dry wells
 - Double barrier
 - •Inert atmosphere
- Cooling by natural draft
- Storage bunker for MLW (long lived)


ATC. The Centralized SNF and HLW storage facility. Focus

- Detailed revision of expected inventories and acceptance criteria, with particular attention to
 - Trend to higher burn-ups
 - Final cycles with relatively low cooling periods
 - Fuel characterization status and requirements
- SF and waste laboratory
 - SF characterization and behaviour
 - Extended storage
 - Disposal
 - Mechanical, chemical, and radiological characterization and behaviour of Rods, samples, irradiated materials
- Launching characterization and licensing work after site designation

Deep Geological Disposal. Previous works

- Site identification Program: 1986-1996
- Deep Geological Repository design and associated
 Performance assessment (1990-2004) in three steps:
 - Disposal concept and basic design
 - Carbon steel canisters placed horizontally in parallel galleries, with Calcium-Bentonite seal
 - Strengthening the bases of the concept
 - Flexibility and Robustness (better justification of decisions, alternatives analysis)
 - Convergence: Package definition common for the three host rocks in consideration (salt, clay and granite)
 - Optimization through requirements review

Deep Geological Disposal. Supporting Research

- Priority of HLW/SNF management is interim storage
- DGR in 2050 for planning and financial purposes
- R&D supporting Deep Geological Repository development adapted to planning.
- Main objectives:
 - Respect of International Commitments and Co-operation
 - Maintenance of research groups' Capabilities
 - Follow-up of state of the art
 - Support future decisions
 - Focus on techniques and basic aspects
 - Consideration of alternatives (i.e. separation and transmutation) and their influence in DGR concept

Conclusions

ATC. The priority

- Gives time for decision making depending on trends and technological and social advances
- The Government has launched the call for candidate municipalities to host the Central SNF/HLW Interim Storages in December 2009.
- Site analysis to be completed in June
- The Ad-hoc Inter-ministerial Commission will pass a report with site proposals
- Technical report pre-characterizing sites released in September 2010
- The CSN approved the generic design of such facility
- NPP on site storage capacity increase as needed
- Research includes extended storage conditions. Research on geological disposal and on advanced recycling options continue in a scale adapted to the general waste management plan time frame.
- Reports to the Government on
 - Generic Design of Deep Geological Disposal,
 - Management options and
 - Feasibility of advanced separation and transmutation

Final

Thank you for your attention