

Spent Fuel Management & Spent Fuel Storage in the USA

ISSF 2010 – Session 1 Komae, Japan November 15, 2010

Albert Machiels Senior Technical Executive

Topics

1. Spent Fuel Management

- Managing Interim Storage A Global Business
- 2. Spent Fuel Storage in the USA
 - Extended Interim Storage
 - Blue Ribbon Commission
 - MIT Report on "The Future of the Nuclear Fuel Cycle"
- 3. Summary

Interim Storage Options

© 2010 Electric Power Research Institute, Inc. All rights reserved.

Managed Storage – Dry Storage in the US

© 2010 Electric Power Research Institute, Inc. All rights reserved.

Blue Ribbon Commission

15 members

- Three subcommittees
 - Reactor and Fuel Cycle Technology
 - Transportation and Storage
 - Disposal
- Draft report due July 2011
- Final report due January 2012

Update of the MIT 2003 "Future of Nuclear Power" (May 2009)

Key Message

"The sober warning is that if more is not done, nuclear power will diminish as a practical and timely option for deployment at a scale that would constitute a material contribution to climate change risk mitigation"

MIT 2010 "The Future of the Nuclear Fuel Cycle" (September 2010)

<u>Finding</u>

Managed storage can be done safely at operating sites, centralized storage facilities, or geological repositories designed for retrievability.

Recommendation

Planning for long-term managed storage of spent nuclear fuel – for about a century – should be an integral part of nuclear fuel design. While managed storage is believed to be safe for these periods, an R&D program should be devoted to confirm and extend the safe storage and transport period.

- *Interim* storage of spent fuel
 - Key element of the nuclear fuel cycle
 - Provides flexibility
 - Technological benefits: decay of heat-generating nuclides
- US Experience
 - Risk information and operational performance
 - Potential "hot-button" issue with public
- Tangible (and lasting) progress toward a permanent disposal path is required to overcome the main societal obstacle to wide acceptance of nuclear energy

References

- EPRI 1020307 "Advanced Nuclear Fuel Cycles Main Challenges and Strategic Options"
 - <u>http://my.epri.com/portal/server.pt?Abstract_id=0000000000010203</u>
- MIT's "Update to MIT 2003 Future of Nuclear Power"
 - <u>http://web.mit.edu/nuclearpower/pdf/nuclearpower-update2009.pdf</u>
- MIT's "The Future of the Nuclear Fuel Cycle"
 - <u>http://web.mit.edu/mitei/docs/spotlights/nuclear-fuel-cycle.pdf</u>
- Blue Ribbon Commission
 - http://brc.gov

