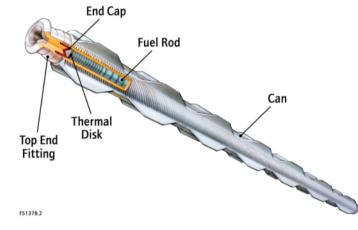
Spent Fuel Management and Storage Development in UK

ISSF 2010, 15-17 November 2010, Tokyo

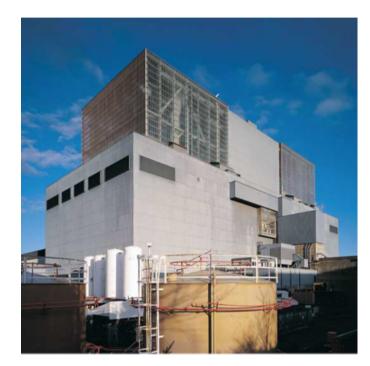
Contents

- Overview of UK Nuclear Power Plants (NPPs)
- Spent Fuel Management (SFM)
 - Current SFM Strategies
 - Development of UK SFM Strategy
 - SFM Sizewell B
 - SFM Sellafield
- SFM Sellafield Ltd Examples of R&D in support of fuel storage
 - Magnox fuel
 - Advanced Gas Reactor (AGR) fuel
- Summary

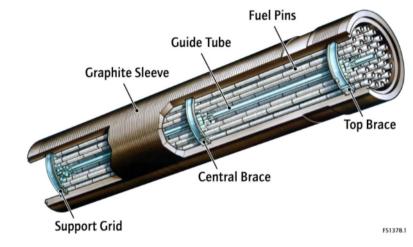


Magnox NPPs – UK 1st Generation

Wylfa NPP Picture courtesy of Magnox North Ltd


- CO₂ Gas Cooled
- Graphite Moderator
- 2 Operational Stations (4 are being defuelled)

- Uranium Metal Fuel
- Magnesium Alloy Clad

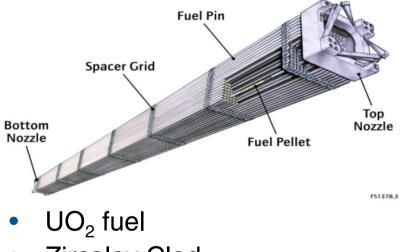


Advanced Gas Reactor (AGR) – UK 2nd Generation

Hunterston B Picture courtesy of British Energy Group plc

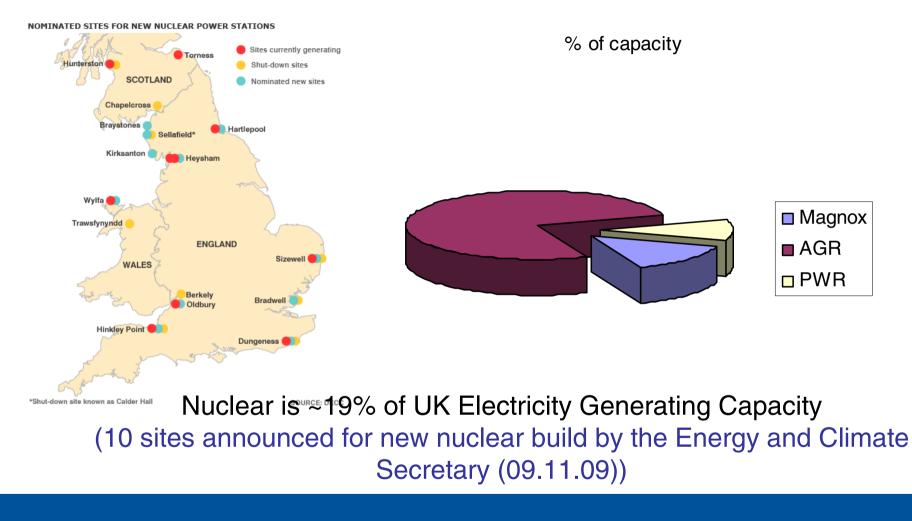
- CO₂ Gas Cooled
- Graphite Moderator
- 7 Operational Stations

- UO₂ fuel
- Stainless Steel Clad

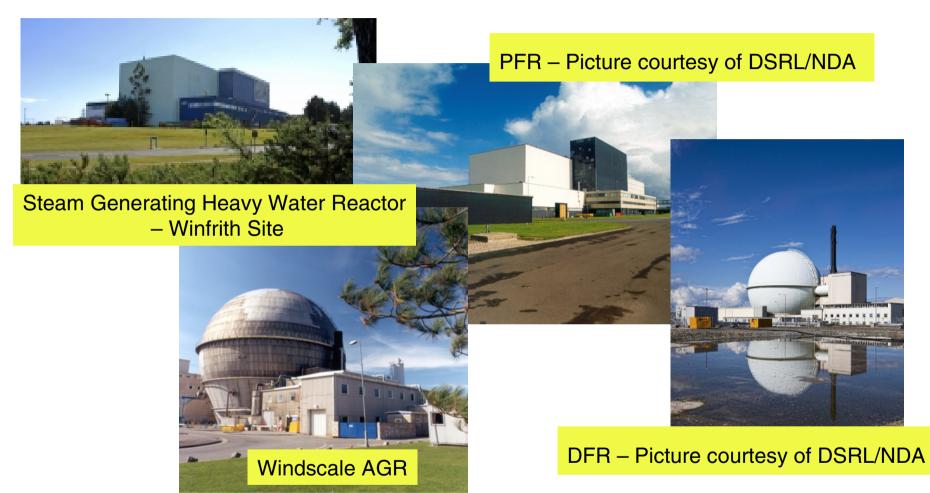

Pressurised Water Reactor (PWR)- UK 3rd Generation

Sizewell B

Picture courtesy of British Energy Group plc


- Light Water Cooled and Moderator
- 1 Operating Station

Zircaloy Clad



Share of Nuclear Electricity Generating Capacity

Experimental Spent fuel from the UK Power Development Programmes

Spent Fuel Management Strategies - UK

- PWR (Managed by British Energy -EDF)
 - Open Cycle
- Magnox (Managed by Sellafield Ltd)
 - Closed Cycle
- AGR (Managed by Sellafield Ltd)
 - Closed Cycle (Until end of Thorp Operations)
 - Open Cycle (Non-reprocessed AGR fuel)
- Exotics (Various e.g. Dounreay Site Restoration Ltd)
 - Closed Cycle (e.g. Dounreay Fast Reactor)
 - Open Cycle (e.g. Prototype Fast Reactor fuel)
- New Build
 - Closed Cycle (Planning assumption)

UK Strategy for Spent Fuels Management

- February 2006 the Nuclear Decommissioning Authority (NDA) announced the intention to undertake a comprehensive long term spent fuel management review
- Objective
 - To identify the key issues associated with the management of spent fuel and to propose an approach that will lead to the development of a long term integrated plan
- NDA has established
 - Topic Overview Group for 'Nuclear Materials and Spent Fuel'
 - Spent Fuels Management is subdivided into three further topics
 - Magnox Fuel
 - Oxide Fuel
 - Exotic Fuel
 - National Stakeholder Group (NSG)
 - Site Stakeholder Group (SSG)

SFM – PWR (Sizewell B)

Example - Ventilated Dry Cask System

- At Reactor storage capacity is expected to be full around 2015
- 2009, Public consultation of the options

('Sizewell B Dry Fuel Store' www.british-energy.com

- Preferred option was to dry store spent fuel in casks in a purpose built building
 - Capacity for up to 3,500 SFAs/200 containers
- February 2010, Planning application was made to the Secretary of State for the Department of Energy and Climate Change (DECC)
- June 2010, Holtec International was awarded a contract to manage the safety case production

SFM at Sellafield – Magnox, AGR & LWR

Fuel Handling Plant – Magnox & AGR

Thorp Receipt & Storage – LWR & AGR

SFM at Sellafield – Magnox, AGR & LWR

- Containerised Storage
 - LWR is stored in Multielement Bottles (MEBs)
 - Boral
 - Boronated Stainless Steel (BSS)
 - Magnox & AGR are stored in skips and containers

SFM- Magnox Operating Plan (MOP 8)

- Wet Fuel Stock Policy
- Limit amount in wet storage to 800tU +/- 50tU by April 2010
- Recognises that prolonged storage could result in fuel deterioration which leads to slower reprocessing and increased discharges

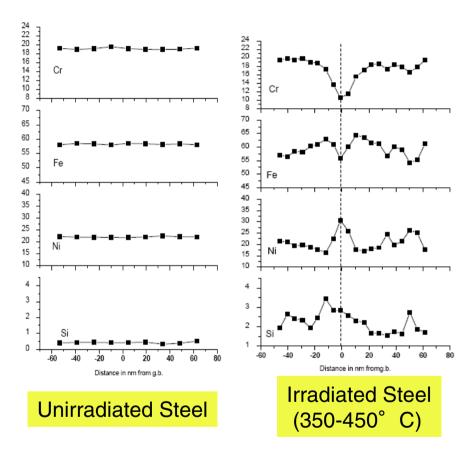
$$- Mg + H_20 \rightarrow Mg(OH)_2 + H_2 ↑$$

Site	Start Bulk Defuelling	Last Fuel Off- site
Calder Hall	October 2012	May 2015
Chapelcross	April 2008	August 2011
Dungeness A	April 2008	March 2011
Oldbury	April 2011	September 2013
Sizewell A	July 2009	June 2012
Wyifa	August 2011	January 2015
Sellafleid	completes reprocessing around January 2016	

Hanford Multi Canister Over-pack (MCO) Picture courtesy of Hanford.gov

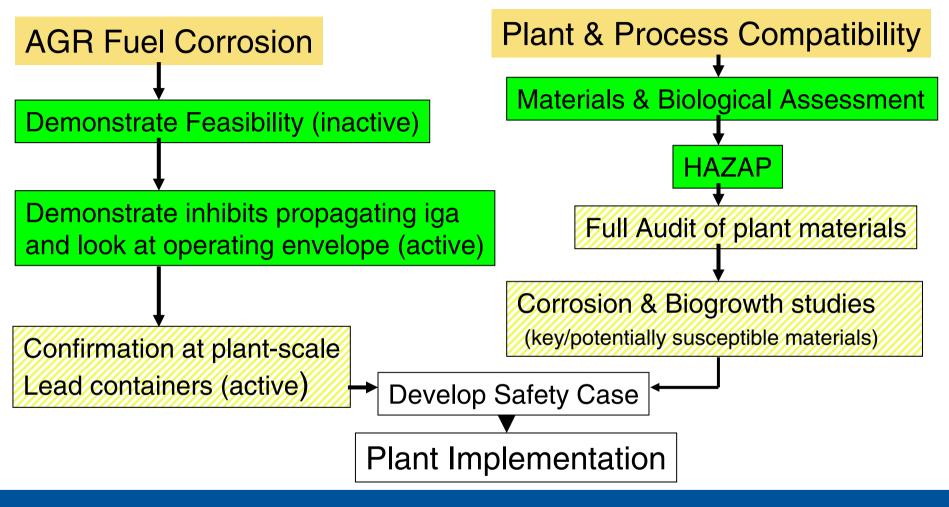
- Development of a Contingency Option for the management of Magnox Fuel
 - The reference case position is Magnox fuel is reprocessed
 - The current plant is 46 years old and has reprocessed >44,000tU
 - Given the age of the plant there is a risk that some Magnox fuel may not be reprocessed
 - There is a need for a contingency to be available that could be deployed in a relatively short time frame
 - Build-on developed technology for metal fuel. In this case a variation to the Hanford MCO

Magnox Contingency Development


- Hanford MCO developed for degraded Zirconium clad uranium metal fuel
- Development of a Magnox fuel canister
 - 26 intact fuel elements
- Resolution of Technical Issues
 - Drying of wetted Magnox fuel
 - Free Water
 - Physically adsorbed water
 - Chemically adsorbed water (tightly bound to Mg(OH)₂)
 - Canister Chemistry Evolution

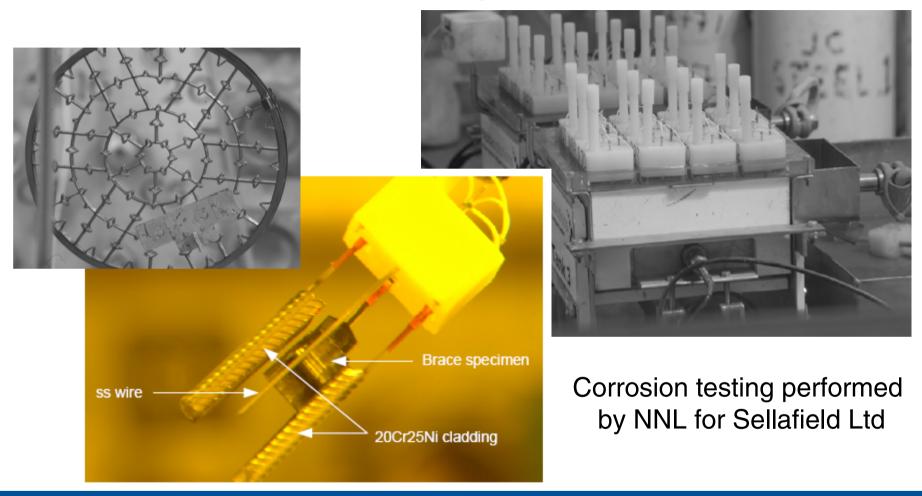
Magnox Contingency Development

- At the beginning of storage some irradiated AGR fuel pins and structural components are left sensitised
 - In wet storage sensitised pins are susceptible to corrosion through inter-granular attack (iga)
- Pre-requisites for iga
 - Must have a sensitised microstructure (through wall to lead to failure)
 - Radiation Induced Segregation (RIS) is observed to occur on 20Cr/25Ni/Nb stainless steel cladding in the temperature range 350°C to 520°C; peak effect at 420°C
 - Some elements of a 7-8 element stringer affected
 - Linked to an applied mechanical stress
 - Failure sites normally associated with areas of stress
 - Must be exposed to a corrosive environment
 - For example Chloride

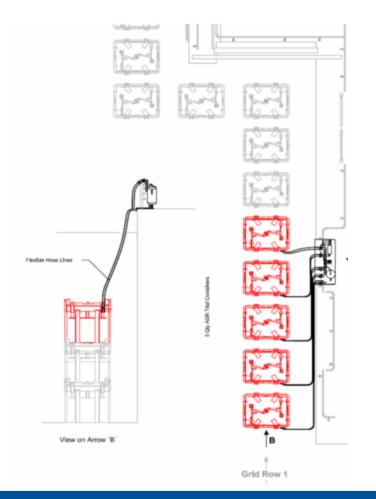


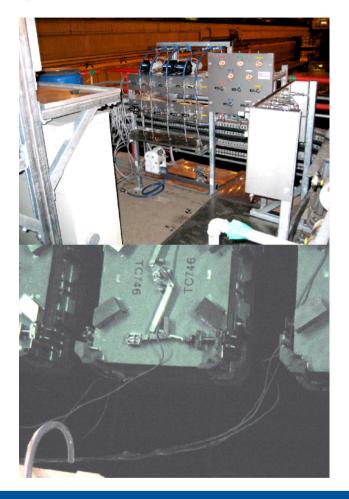
AGR Alternative Corrosion Inhibitor Development

- To prevent the potential for AGR fuel to corrode during wet storage, the corrosion inhibitor sodium hydroxide is deployed at Sellafield where practicable
- The exception is Thorp Receipt & Storage (TR&S) where a reprocessing buffer is stored in demineralised water
- Sodium Hydroxide cannot be deployed in TR&S due to compatibility issue with LWR MEBs



AGR Alternative Corrosion Inhibitor Development




AGR Alternative Corrosion Inhibitor Development

Alternative Corrosion Inhibitor Development -Hot laboratory studies

Alternative Corrosion Inhibitor Development -Plant scale demonstration

Summary

- Provided an over-view of Nuclear Power Generation in the UK
- Out-lined Spent Fuel Management in the UK
 - SFM Strategies
 - SFM Practices
- Given two examples of R&D in support of spent fuel management at Sellafield
- Thank you for listening

