CRIEPI

(C)

Teaching PRA and conducting PRA research at universities

George Apostolakis Head, Nuclear Risk Research Center <u>apostola@mit.edu</u>

Presented at the Symposium on Risk Integrated Engineering University of Tokyo January 21, 2019

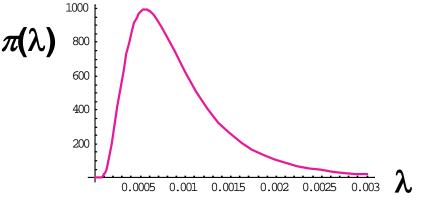
PRA Methodology

• What universities can teach

- Probability
- Statistics
- PRA structure and models
- PRA calculations
- Risk management process and safety goals
- What they cannot teach
 - Accident sequence development

Probability and Statistics

- U.S. nuclear and mechanical engineers do not, in general, have a background in probability and statistics
- An introductory PRA course must cover the essentials of probability and statistics
- Doing so limits the time for teaching PRA methods
- Topics specific to PRA
 - Bayesian methods
 - Aleatory and epistemic uncertainties
 - However, there is only one kind of uncertainty
 - Importance measure
- Practitioners are uncomfortable defending their judgment (as opposed to classical statistics)


The Model of the "World"

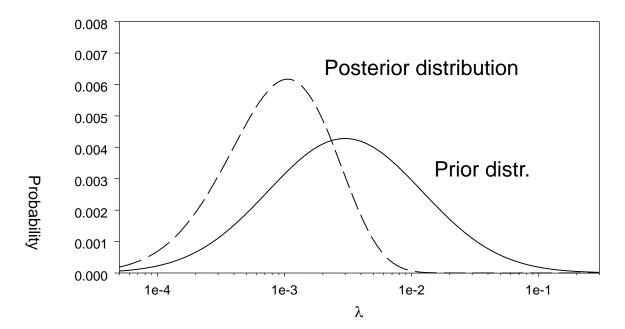
- Deterministic, e.g., a mechanistic computer code
- Probabilistic (Aleatory) model,
 e.g., R(t/λ) = exp(- λt)
- Both deterministic and aleatory models of the world have assumptions and parameters.
- How confident are we about the validity of these assumptions and the numerical values of the parameters?

Epistemic Model

- Uncertainties in assumptions are not handled routinely. If necessary, sensitivity studies are performed.
- Parameter uncertainties are reflected on appropriate epistemic distributions.
- For the failure rate:

• $\pi(\lambda)d\lambda = Pr(\text{the failure rate has a value in } d\lambda \text{ about } \lambda)$

WASH-1400 Failure Rates

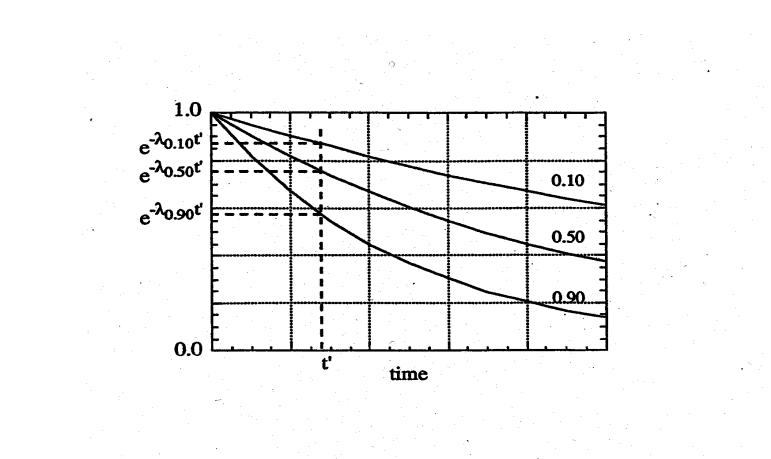

		· ·
Component/Primary	Assessed Values	
Failure Modes	Lower Bound	Upper Bound
	Mechanical Hardware	
Pumps		
Failure to start, Qa:	3×10^{-4} /d	$3 \times 10^{-3}/d$
Failure to run, λ_{0} :	$3 \times 10^{-6}/hr$	$3 \times 10^{-4}/hr$
(Normal Environments)		· · ·
Valves		
Motor Operated		
Failure to operate, Q _d :	3×10^{-4} /d	$3 \times 10^{-3}/d$
Plug, Q _d :	$3 \times 10^{-5}/d$	$3 \times 10^{-4}/d$
Solenoid Operated		
Failure to operate, Q _d :	3×10^{-4} /d	$3 \times 10^{-3}/d$
Plug, Q _d :	$3 \times 10^{-5}/d$	$3 \times 10^{-4}/d$
4	•	
Air Operated	-4	- 3
Failure to operate, Q _d :	$1 \times 10^{-4} / d$	$1 \times 10^{-3}/d$
Plug, Q _d :	$3 \times 10^{-5}/d$	3×10^{-4} /d
Check		
Failure to open, Qd:	3 x 10 ⁻⁵ /d	$3 \times 10^{-4}/d$
Relief		_
Failure to open, Q _d :	3 × 10 ⁻⁶ /đ	$3 \times 10^{-5}/d$
Manual		
Plug, Q _d :	$3 \times 10^{-5}/d$	3×10^{-4} /d
Pipe	-	-
Plug/rupture		
\leq 3" diameter, λ_{o} :	$3 \times 10^{-11}/hr$	$3 \times 10^{-8}/hr$
> 3" diameter, λ_0 :	$3 \times 10^{-12}/hr$	3×10^{-9} /hr
Clutches		
Mechanical		
Failure to engage/	-	-3
disengage	1×10^{-4} /d	$1 \times 10^{-3}/d$
	Electrical Hardware	
	SIECULICAL NATUWALE	
Electrical Clutches	·	
Failure to operate, Q _d :	$1 \times 10^{-4}/d$	$1 \times 10^{-3}/d$

© CRIEPI 2015

Example of Bayesian updating of epistemic distributions

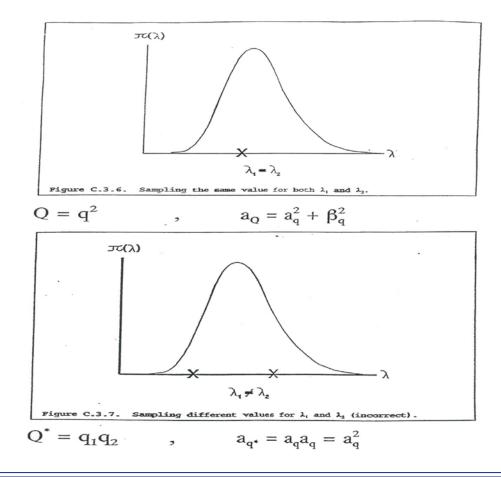
Five components were tested for 100 hours each and no failures were observed.

$$\pi'(\lambda/E) = \frac{L(E/\lambda)\pi(\lambda)}{\int L(E/\lambda)\pi(\lambda)d\lambda}$$

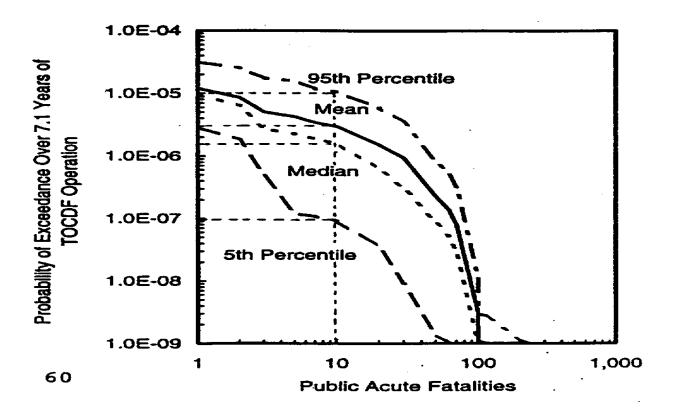


© CRIEPI 2015

7


Communication of Epistemic Uncertainties

Epistemic Correlation


- Consider two nominally identical isolation valves
- They share the epistemic distribution of failure rate

Risk Curves

Propagating epistemic uncertainties through the PRA models (usually via Monte Carlo simulation), we produce the risk curves.

PRA Models

- Event and fault trees
- Human reliability
- Reliability physics models
- Common-cause failures
- Examples from PRAs
- External events

PRA Methodological Research

- Data specialization using Bayes theorem
- Epistemic correlation of parameter distributions
- Plant-to-plant variability
- Fire methodology
- Human Reliability Analysis
- Uncertainties in phenomenological work
- Model uncertainty
- Safety goals

CRIEPI

()

- Risk management
- Simulation methods

Plant-to-Plant Variability

- Suppose the evidence from two plants is
 - > (1 fire in 8 years) and
 - > (0 fires in 6 years)
- If we say that the evidence is (1 fire in 14 years), we will be increasing the strength of the evidence artificially resulting in a narrower distribution for the fire rate
- The evidence from the two plants must be processed separately so that the distribution will be broader

Concluding Remarks

- Teaching a course in PRA is usually hampered by the students' lack of background in probability and statistics
- Most students have been exposed to classical (frequentist) statistics; they have difficulty switching to Bayesian (subjectivist) statistics
- A PRA course is necessarily limited to methodology
- Ideally, traditional engineering courses would discuss uncertainties in their models.

