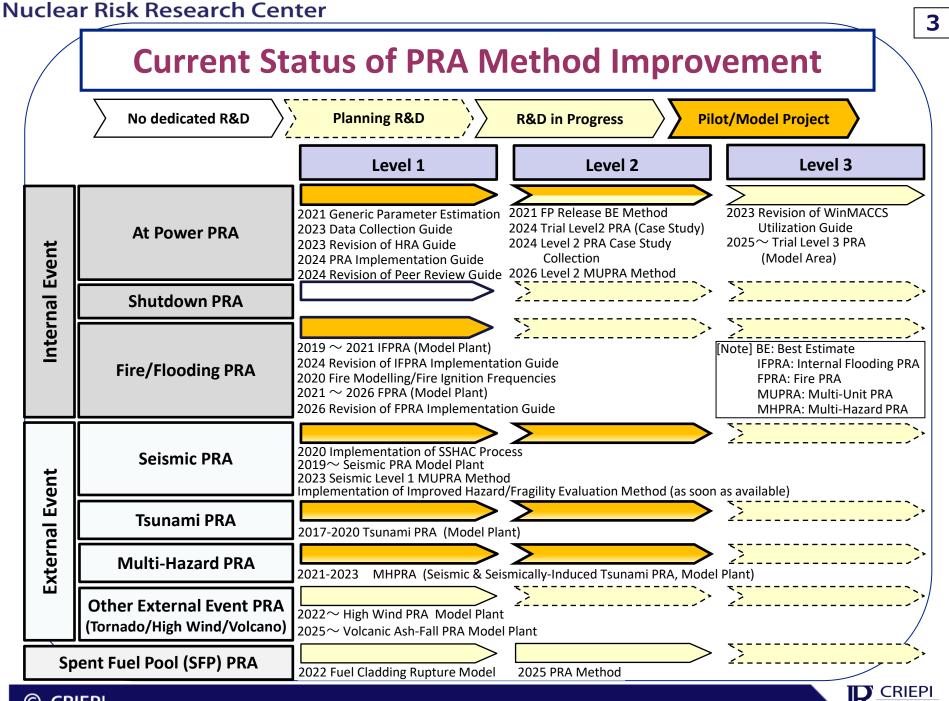

NRRC R&D Roadmap

As of March, 2025


Nuclear Risk Research Center (NRRC)

R&Ds to contribute to voluntary efforts to improve nuclear safety

- •Learn more about low-frequency, high-consequence natural events and develop measures to safeguard against them.
- Apply risk-informed technology in addition to the conventional deterministic approach.

Projected Schedule of PRA Method Improvement

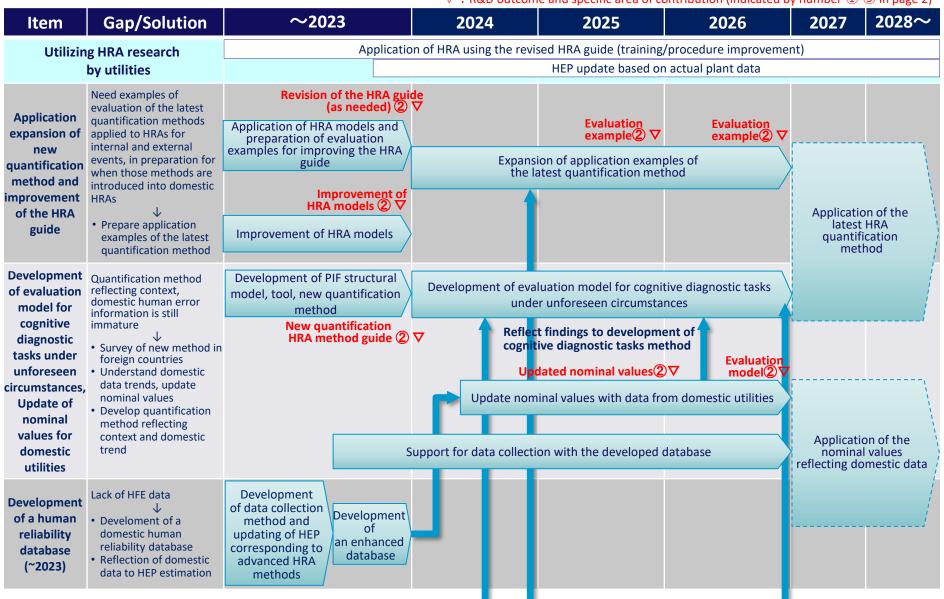
Application of each key method Practical R&D \Rightarrow as soon as it becomes available **Application Fiscal Year** ~2023 2024* 2025 2028~ **PRA Item** 2026 2027 R&D Item Internal Event Level1 PRA Method Improvement Human Reliability Analysis (HRA) Method Improvement **HRA Method Development for Extreme Condition** Internal Events **Multi-Unit PRA Method Development** Radioactive Material Release Risk Analysis Method Improvement (Level 2) **Environmental Impact Risk Analysis Method Development (Level 3) Internal Fire** Internal Fire Risk Analysis Method Development (Level 1) **Internal Flooding** Internal Flooding Risk Analysis Method Development (Level 1) Seismic Risk Analysis Method Improvement (Level 1-2) SSHAC Process Establishment Seismic Hazard/Fragility Analysis Method Improvement Tsunami Risk Analysis Method Improvement (Level 1-2) Tsunami **Hazard/Fragility Analysis Method Improvement** Tornado/High Wind Risk Analysis Method Improvement (Level 1-2) Tornado/High Wind Hazard/Fragility Analysis Method Improvement Volcanic Ash-Fall Risk Analysis Method Improvement (Level 1-2) Volcano Hazard/Fragility Analysis Method Improvement **Spent Fuel Pool (SFP)** SFP Risk Assessment Method Development **Risk Communication Internal/External Communication Measures**

^{*●:} R&D items with outcomes or elements, as of March 2025, applicable to preliminary study or plant evaluation of PRA by the utilities

1. Internal Event Level 1 PRA Method Improvement

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2) ~2023 2028~ Item **Gap/Solution** 2024 2025 2026 2027 **▽** Review report② (Internal Level 1/1.5) ∇ ∇ ∇ ∇ Domestic PRA has not reached (to be reported every FY afterward) the state of practice. Overseas-expert reviews of Ikata Unit3 and Kashiwazaki-Kariwa Unit7 PRAs Support of Overseas-expert reviews of pilot projects for pilot plants for PRA model Incorporation of the knowledge from the review to the PRA model of non-pilot plants improvement **Good PRA** PRA Implementation Guide 2 Develop a guide to support (Internal event Level 1 PRA) ▽ utility's PRA modelling to Development of guide describing PRA standard Revision of the guide requirements (Internal event Level 1 PRA) meet international standard (Other than internal event Level 1) The domestic system of ∇ Draft PRA peer review guide ② **∇**Practical review guide ② achieving good quality PRA is Revision of the guide Development of PRA peer review guide not well-developed. (With feedbacks from expert review) **Development of PRA** peer review Develop PRA peer review **∇** Manual for working observer ② **VPeer review trial 2** procedure guide for non-pilot plants Development of a PRA peer review system / Survey of the PRA peer reviews in the • Develop peer review system Peer review implementation U.S. with domestic engineers Event data collection for component failure, CCF etc. (Data update from new OE & Data scope extension to severe accident equipment) **▽**Data collection Generic component Revision of data Update generic component parameters (2) parameters ② ▽ guide (2) collection guide ②▽ PRA reliability parameters Estimation of **Development of** Update of estimation of component failure parameters with adequate quality have component failure parameters not been developed. **PRA** reliability **▽**CCF data collection guide② **▽**CCF parameter estimation ② database **Update of CCF parameters** Estimation of CCF parameters Development of a data **▽Probability of LOOP recovery failure**② LOOP IE parameter ②∇ collection guide Estimation of LOOP **Development of** Update of LOOP frequency Estimation of generic PRA frequency **PRA** reliability **▽MSPI UA data collection ▽** Generic UA data collection parameters of equipment guide/parameter estimation 2 guide/parameter estimation 2 reliability, CCF (common parameters Estimation of MSPI baseline (UA) Update of MSPI UA/Estimation of generic UA for PRA cause failure), LOOP (loss of **▽** Reliability Database System ② offsite power), UA ∇Operation of the reliability database system (2) Development (unavailability), etc. of reliability Improvement/update of the system (including IE/CCF/UA data registration and improvement) data system

*MSPI: Mitigating System Performance Index



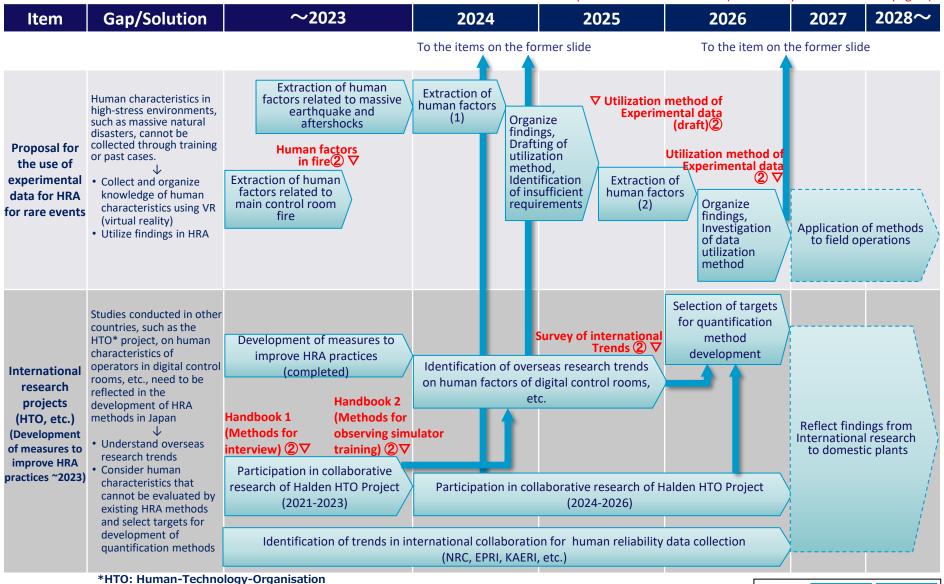
Central Research Institute of

2. Development and Advancement of Human Reliability Analysis Methods (1/2)

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2)

From the items on the next slide

CRIEPI


From the item on the next slide [Legend]

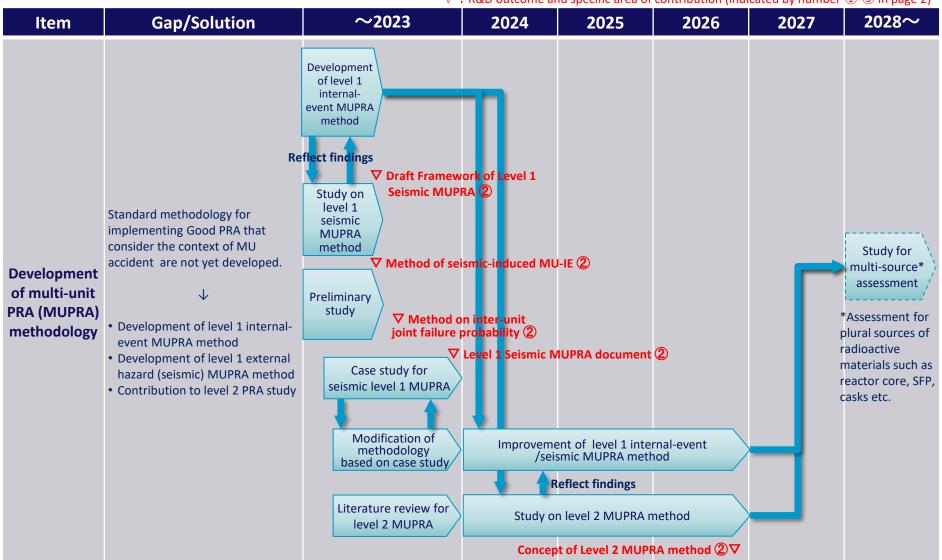
NRRC

Utility

2. Development and Advancement of Human Reliability Analysis Methods (2/2)

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2)

CRIEPI


Central Research Institute of
Electric Power Industry

NRRC

Utility

[Legend]

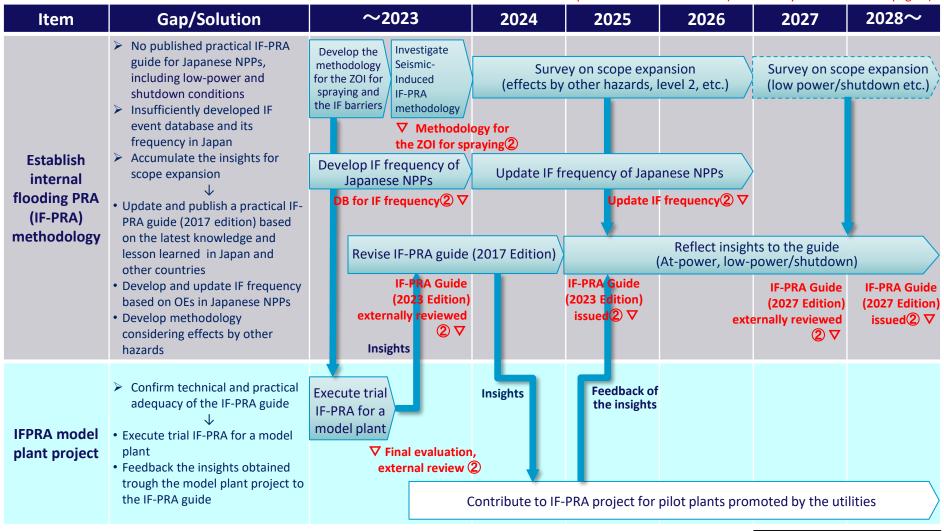
3. Multi-Unit PRA (MUPRA)

4. Radioactive Material Release Risk Analysis Method Development (Level 2)

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2) 2028~ **Gap/Solution** ~2023 2024 2025 2026 2027 Item **▽DF** data for penetration ② **▽** Evaluation model for FP behavior ② Advancement of FP behavior Enhancing knowledge of Elucidation of evaluation technology (deposition realistic behavior phenomena at low power and to buildings/FP transport, of FP and model shutdown decontamination at penetrations and scrubbing) **∇**Evaluation method of **▽** Effectiveness Insufficient development of FP behavior in R/B (2) of DF for R/B evaluation method for realistic (detail) (2 **Evaluation of FP** containment failure, its frequency Updated evaluation method for deposition/transfer FP behavior and CV integrity 2∇ (CFF), and source term Development of evaluation behavior in R/B by method for FP behavior in R/B MAAP and validation · Elucidation of the behavior of of the models Extension of evaluation method for FP behavior representative nuclides (Cs) and CV integrity at low power and shutdown Accident · Analysis of FP deposition and Development of a realistic evaluation method progress transfer behavior in a containment for FP transport behavior analysis vessel (CV) and a reactor building Model validation and advancement during SA of MAAP code (reactor -Model validation, improvement and enhancement of MAAP code Development of methods for containment estimating realistic FP behavior Procedure of CV integrity evaluation method 2∇ Model development for mitigation vessel -Study for shutdown L2PRA② ▽ systems, such as FCVS multireactor Development of methods for analysis of CV Development of Good Level 2 PRA method Development of analysis methods integrity (Temperature analysis, structural source* building) for low power and shutdown for the temperature inside a CV and analysis, fragility analysis model) assessment identifying the damaged parts Confirm effectiveness of blowout panel Development of hydrogen behavior nple evaluation method of H2 behavior 2∇ and ceiling ventilation 2∇ evaluation method in R/B Development of hydrogen behavior evaluation method in R/B during SA Establishment of evaluation method on important accident ∇Various evaluation model by PRD② scenario Development of at-power Good Level 2 PRA Streamlining Level 2 PRA through international method reflecting the state-of-the-art cooperation (OECD/NEA FACE, ATRIUM, CSARP, knowledges (CFF, Source Term PRD, TI-SGTR, IPRESCA etc.), or utilizing AI and machine learning *Assessment for Dynamic PRA, EDF Collab., International Project) plural sources of Update of L2PRA case study collection ** 2 radioactive Trial of Level 2 PRA for core (case study) and materials such as establishment of a L2PRA case study collection Extension and update of case study collection reactor core, SFP, (at power) Development of Good Level 2 PRA Model plant casks etc. ** A case study report was to be published instead of a L2PRA case study methodology by confirming the collection** ② 🗸 assessment guide for Level 2 PRA to keep range of users' choice under applicability of various methods Survey of previous studies for the current situation that various practical methods level 2 multi-unit PRA internationally exist (as of March 2025).

5. Environmental Risk Evaluation Method Development (Level 3)

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2) **Gap/Solution** ~2023 2024 2025 2026 2027 2028~ **Item Protective measure Evaluate the importance** ∇ of parameters ② Vinput method ② Survey of domestic Site Data setup Site Data setup methodology ② ∇ parameters ∇ methodology ② Survey of domestic parameters Survey of domestic parameters Comprehensive impact ∇ assessment method ② WinMACCS guide Electric power industries cannot use ▽ revise ② the newest level 3PRA. Comprehensive analysis Methods of Impact **Analysis of** of parameters Level 3 PRA assessment② ∇ Development Investigate the characteristic of a method② ∇ of the level 3 U.S. code WinMACCS Development of risk analysis technique PRA · Development of the input method Level2-3 interface Level2-3 interface from a MAAP to WinMACCS technology ∇ tool ② ∇ tool revise 2 Development of Development of Level 3PRA Survey the domestic data and prep Development of source efficient analysis method combined with are the parameter of WinMACCS term input method and ∇ methods 2 Level 2 PRA uncertainty analysis Level2-3 interface tool revise ② ∇ method Development of an interface method between Level 2 and Level 3 PRA. uncertainty analysis method for source terms Apply each methods and Trial operation of each method and tool tools to the calculation Construction of model area Examination of level 3 by combining actual data PRA against preliminary (weather, site vicinity, Level 3 PRA trial model area Level 3 PRA trial source term, etc.) results② ∇ **Application** results② ▽ to model area Improvement of Level 3 PRA Level 3 PRA trial for model area method for model area


Electric Power Industry

6. Development of Fire PRA Methodology and Data

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2) ~2023 2024 2025 2026 2027 2028~ **Gap/Solution Item ▽** FPRAG (2019 edition) Applicability of FPRA Guide (FPRAG) FPRAG (2026 Edition) FPRAG (2026 edition) issued 2 and Fire Ignition Frequency (FIF) to issued ②∇ externally reviewed ②▽ Accumulate PRA for actual NPPs, including low-Reflect new findings to the Develop insights Revision of FPRAG (At-power) power and shutdown conditions **FPRA** revised version (At-power, to update > Accumulate the insights for scope methodology low-power/shutdown) **FPRAG Establish** expansion **Insights Insights** internal fire Update FPRAG (2019 edition) based PRA (FPRA) Investigate Update FIF for Japanese NPPs, Survey on scope expansion Develop FIF seismicon the latest knowledge and lessen (low-power/shutdown, effects by other hazards, level 2 etc., for Japanese methodology Induced FPRA learned in Japan and other countries **NPPs** consider guide revision) methodology • Develop and update FIF based on OEs Fire ignition **▽**Update in Japanese NPPs frequency 2∇ fire ignition Develop methodology considering frequency2 effects by other hazards > Applicability of FPRAG and FIF Execute trial IF-PRA for a Execute trial IF-PRA for a model plant **FPRA** model model plant (Phase 1) (Phase 2) FPRA for a model plant and gain plant project Fire modeling A Risk profile Contribute to FPRA project for pilot plants promoted feedbacks to FPRAG \bigcirc methods by the utilities Potential back-fits considering Develop fire modeling Improve modeling methodology regulation trends & new findings methodology > Lack of knowledge about electric Develop field model. ② ▽ **∇**Release updated Insights Develop DL model. 27 cabinet fire ignition and propagation zone model (BRI2-CRIEPI)2 > Damage mechanism on targets International cooperation (including digital I&C) due to smoke with OECD/NEA (multi room fires: PRISME3) and heat **Update of fire** modeling Information exchange with Collaborative fire test with EDF "PRELUDE" · Accumulate the knowledge by fire EDF, INL methods tests using full-scale electric cabinets **Evaluation tests for** HEAF fire and ZOI tests on Correspond to new insights and various combustibles **Insights** target failure condition (digital I&C, etc.) electrical cabinets and bus- Develop fire model and deep learning (digital I&C, etc.) ducts (DL) model necessary for fire **▽** Prevention **▽HEAF-ZOI** propagation analysis methodology model(1) · Introduce and utilize the latest on HEAF fires 1 knowledge through international joint International cooperation with research and collaboration with **NRRC** [Legend] Utility OECD/NEA (HEAF ZOI: HEAF2) overseas organizations

7. Development of Internal Flooding PRA

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2)

[Legend] NRRC Utility

8-1. Seismic/Earthquake Resistance (Fault Activity) (1/2)

			V . K	&D outcome and spe	cinc area of contribut	ion (indicated by numbe	er 🛈-🦁 in page 2
ltem	Gap/Solution	~2023	2024	2025	2026	2027	2028~
		Fundamental research on the origin of heaving deformation of quaternary sediments	te findings	he quaternary mation ①②	∇Pro assess	pose fault activity ment method ①②	
		activity assessm independent overlying stra	lent Resea of indepen	rch on fault activity asse dent of overlying strata			/
	It is difficult to assess the activity of faults without overlying strata of	analytic for fault	ify/refine the al techniques rock samples ①② ▽	Incorpo findings	rate nano	lishment of structural analysis od for fault planes	
Fault activity assessment	 Nown age. Development of assessment method of fault activity based on 	method of fault fracture zone pr using state-of- tech	t of assessment activity based on operties analyzed the-art analytical niques	Systematization assessment method structure analysis	of fracture zone	Indicators of changes	
based on the nature of fault zone	fracture zone properties • Development of a new dating method which can be applied to a strata undated by traditional	Examine of structure	arison depth-variable e of fault rocks 12		i mparison assoc	n fracture properties iated with rock types 12∇	
20116	methods	Laboratory exa fault fracturii	imination of ng process	Fault rupture repro by laboratory e	duction and verification experiments and numer	ical analysis	
		for alteration hydrotherma	al veins $\bigcirc \bigcirc \nabla$	-11	alteratio processe	ion of hydrothermal n and weathering sthrough chemical of minerals 12 ∇	
		Hydrotherma study for a com fault z	nparison with		ation of methods to ide rmal alteration or weat	ntify	
	K-Ar dating	expansion of a g method, and a sting method to	oplicability of application of	Incorporate findings	fault activity dating, 10E	ion of case studies of evaluation by OSL/TL se dating and aeolian wide area	
		enhancem	ating study for ent of their ability	geol	Integrated use of ogical dating methods		

8-1. Seismic/Earthquake Resistance (Fault Activity) (2/2)

abla: R&D outcome and specific area of contribution (indicated by number 1-5 in page 2

			▽:	R&D outcome and sp	pecific area of contribut	ion (indicated by numbe	er ①-⑤ in page 2)
Item	Gap/Solution	~2023	2024	2025	2026	2027	2028~
			he condition of mination ② ▽			ethod for evaluating r and fault geometry	
	Uncertainty in recognition active faults due to regional characteristics	Rational assessi of multi-segm (quantitative	ent faulting e analysis)	for ear	n of source fault assessme thquake magnitude predic		
Assessment of seismic source through active fault		findings	Advancement o source characte in coastal area (rization Inco	orporate sour	ancement of seismic ce characterization lind faults ①② ▽	
iduit	termination • Development of recognition method for active faults in areas where it is difficult to identify	Developm recognition for active faul are	n method ts in coastal	Develop	pment of a recognition me for blind active faults	ethod	
	seismic source	Collection of	✓ Sort out issue	es ②	Incorporate findings	Feature extraction of near-surface fault structure 12 ∇	
		new findings related to revision of international standards		Characterization	on of recently occurred su gical structure, paleoseism	rface ruptures	
Investigation	Incorporation finding	ate Summ ngs informa charact	arization of bas ation on distribu eristics, and ements of subsic ② ▽	tions,	nparison Incorporate findings	Establishment of a fault displacement evaluation method	
of distribution patterns and characteristics of surface	faults have not been recognized. ↓ • Clarify possibility to pre-identify active faults based on investigation of their fault	characte displaceme ruptures bas	of distributions, ristics, and nts of surface sed on remote I field surveys		of distributions and displac uptures based on remote s		
ruptures	properties Comparis	son fault syste	nization and an model test resu ematization of a niques ①②▽	ılts, and		Feature extraction of ous and disappearing faults 12 ∇	
		Systematiza developmen active fault syst model tests a	t process of tems based on	propos	data on existing geologica al of a method for its evaluult continuity, reactivation	uation	

8-2. Seismic/Earthquake Resistance (Seismic Motion)

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2) **Gap/Solution** ~2023 2026 2027 2028~ 2024 2025 Item The causes of high-acceleration Standard level assessment of seismic ground Standard level assessment of seismic ground ground motions exceptionally motion with unspecified source $\bigcirc 2 \nabla$ motion with unspecified source $(1)(2)\nabla$ observed at middle scale M6-**Evaluation of** class earthquakes are not fully Understanding the causes of strong ground motion based on the in-situ survey and its application to site characterization and evaluation of outcrop rock motions understood. seismic ground motion with Understanding the causes of unspecified the strong-motion records Development of new generation domestic GMPE for hardrock source based on detailed investigations of the sites Estimation of outcrop ground Assessment techniques Source modeling and motions at the bedrock for velocity structure evaluation of near-source (incl. seismogenic layer) ground motions using Enhancement of methodology dynamic models $(1)(2)\nabla$ \bigcirc for evaluating near-source Modeling of deep subsurface structure and seismic seismic motions, updating of Modeling of deep seismic soevaluationurce and enhancement of near-source seismic motion method soevaluationurce and enhancement of near-source ground motion prediction seismic motion method equation and adjusting the Flat file database (1)2 ∇ Flat file database ①②▽ equation to a local bedrock are necessary. Construction of database on outcrop rock records Expansion of database **Evaluation of Enhancement of evaluating** seismic ground near-source seismic motions motion by Construction of flat file Development of new generation domestic GMPE for hardrock (Non-ergodic) identifying the database of outcrop rock seismic source records and updating ground Establishment of GMPE conversion method to motion prediction equation site rock conditions 12∇ based on nationwide high Advancement of subsurface structure modeling and attenuating modeling methods and site characterization methods quality outcrop rock records Developing site adjustment of Plan for domestic implementation of multi-site SSHAC ground motion prediction Plan for domestic implementation of equation based on subsurface multi-site SSHAC 27 Reflection to AESJ standard structural model Construction of a domestic implementation plan for multi-Construction of a domestic implementation plan for Plan The domestic implementation site SSHAC (East Japan area) multi-site SSHAC (West Japan area) application, method of SSHAC has not been established vet. Multi-hazard assessment of earthquake and tsunami Estimating epistemic Estimating epistemic superposition, etc. uncertainty 2∇ Establishment of domestic **Probabilistic** SSHAC applications considering seismic hazard epistemic uncertainty in PSHA Enhancement of estimating the epistemic uncertainty of ground motion prediction models analysis (PSHA) and introduction of site Estimating epistemic uncertainty for fault-rupture characterization model of ground motion prediction model 2∇ **Enhancement of underlying** Application of seismic techniques for PSHA Development of seismic PRA method introducing fault-rupture model PRA method

8-3. Seismic/Earthquake Resistance (Ground)

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2)

Proposal of modelling and evaluation method Development of 3D	Item	Gap/Solution	~2023	2024	2025	2026	2027	2028~
and to clarify the uncertainty in seismic PRA. Possibility of introducing next-generation innovative reactors. ↓ Stembard and systematization of evaluation methods for seismic safety of ground **Technical document of the numerical fault displacement insafety assessment methods **Technical document of the sumerical fault displacement insafety assessment methods **Technical document of the JSCE (fault displacement and guidelines for advanced seismic safety assessment methods **Technical document of the JSCE (fault displacement and liquefaction) **Standardization and practical application of ground **Implementation of liquefacti impact assessment meth method considering variations in geotechnical properties ①②▼ **Advanced evaluation of seismic stability of soil ground (including liquefaction) **Improving and systematizing evaluation of seismic stability of soil and ground **Improving and systematizing evaluation of soil and ground **Improving and systematizing and evaluation of soil and ground **Improving and systematizing to soil and ground displayed to soil and gro		With the increase of the reference earthquake ground motion, it is necessary to improve the seismic safety evaluation method for	ation method ①②▽ copment of 3D cifuge shaking table ①②▽ Enhancement for fo (ground mode	evaluation of seismic safety evolundation ground au Illing, bedrock, risk	method ①②▽ raluation methods nd slopes assessment, slope	four ground modelli	evalua seismic safety evalu dation ground and s ng, seismic stability o	tion method ①②∇ ation methods for slopes of rock mass, fault
foundation ground and slopes (ground modelling, seismic stability of rock mass, fault displacement, slope failure, uncertainty) Improving and systematizing the evaluation of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic safety assessment methods Formulation of standards and guidelines for advanced seismic safety assessment methods From the valuation of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic safety assessment methods From the interval of the stability of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic safety assessment methods From the interval of the stability of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic safety assessment methods From the interval of the stability of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic safety assessment methods From the interval of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic safety assessment methods From the interval of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic safety assessment methods From the interval of the stability of soil and ground seismic safety assessment method sevaluation method	and to clarify the uncertainty is seismic PRA. Possibility of introducing next-generation innovative reactors and ystematization and to clarify the uncertainty is seismic PRA. Possibility of introducing next-generation innovative reactors ↓ Enhancement of seismic safe			method cons geotechnica valuation of seismic	idering variations in I properties ①②▽		impact	assessment metho
	methods for seismic safety	evaluation ethods for foundation ground and slopes (ground modelling, seismic stability of rock mass, fault displacement, slope failure, uncertainty) Improving and systematizing the evaluation of the stability of soil and ground during earthquakes Formulation of standards and guidelines for advanced seismic	modeling and luation method 12 \notice Enhancement has the limit of th	Proposal evaluation of the numerical fazard assessment m ment of the JSCE (fand liquefaction)	of modelling and method 12 V ault displacement ethod	JEAG4601 ①▽ Standardization and		①②▽ n of ground stability

Enhancement of seismic PRA methodology using a model plant

8-4. Seismic/Earthquake Resistance (Structures)

			: R&D outcome	and specific area c	i contribution (inc	ilcated by number	Ti-Sim page 2)
ltem	Gap/Solution	~2023	2024	2025	2026	2027	2028~
	For critical civil engineering structures in liquefied ground and fault crushing belt, seismic evaluation is required.	Seismic response evaluation for 3D structures in liquefied ground	ion D∇	Actual cap	Inspection after acity evaluation of	and evaluation ner the earthquake	nethods ①②▽
	Development and standardization of seismic performance	Seismic performance verification for RC structures in fault crushing belt		underground ci	vil engineering stru (Phase I)		(Phase II)
	verification methods for RC structures in liquefied ground and fault crushing belt	Paper submission Enlargem	ent of seismic pe rerification metho	rformance od ①② ▽		Paper submissio	
engineering structures	Considering earthquake damage, seismic retrofitting and aging	Publicizing and standardization of s on underground civil en			practical applic	ublicizing, standar cation of seismic p underground civil structures)	erformance
	deterioration, standardization and practical application of rational structural soundness evaluation is required • Proposal and publicizing of structural soundness evaluation methods by non-destructive	△ Upgrade of seismic performance verification method ①②	Paper <mark>sub</mark> mission	n		evalu <mark>ati</mark> on	sismic soundness method ①② △ aper submission
		Damage evaluation for existi measure Loading capacity evaluation base structu	ment ed on inspection re		performance underground ci enhanceme	e (Enhancement of e verification tech vil engineering str ent of structural sc echniques for RC s	niques for uctures, and oundness
	measurement and inspection result				△Application of to structura	finspection result al evaluation ①②	
				9. Seismic	PRA		
					t of seismic PRA m sing a model plant		

8-5. Seismic/Earthquake Resistance (Buildings)

			∨ : R&D out	come and specific are	a of contribution (indic	ated by number	1)-(5) in page 2
ltem	Gap/Solution	~2023	2024	2025	2026	2027	2028~
	Knowledge needs to be accumulated to develop a building seismic design system for large inputs that includes nonlinear 3D finite element analysis (3D-FEM).	Improvement in building behavior assessment for large input		Standardization and	systematization of bui mic design and safety		
Rational	 Gradually developing the elemental technologies (nonlinear model setting, ground-building interaction, high- performance computing (HPC)) needed to utilize 3D-FEM 	Developmei finite eleme performand	nt on standardizarnt analysis-based ce evaluation for l facilities (Pha Consistency		Consistence	hase II	
seismic design technique	In PRA evaluation, a building is conservatively considered to be a total loss when one of	Developme (SRA) fo Perform	ent of structural roor post-maximum ance Computing(edundancy analysis loading using High- HPC) techniques	Building redui HPC	ndancy assessmer upgrading	nt
and safety assessment technique	 seismic walls reaches at maximum load, and that is likely to leads to severe core damage. Computational evaluation for partial-damage and structural-redundancy analysis Technology development for multi-point observation is necessary for verifying the 3D 	3D System nuclear	redundancy e Enhance identification of Facilities ①②∇		Incorporate findings		
	 behavior of buildings. Development of ambient vibration test for nuclear facilities and high-density multi-point vibration monitoring technology 	us	ing ambient vibra Concrete materia	bration evaluation ation test lest after quake) at post-quake ②△	Development of 3D o ground-building vibrati multi-point vi		
Ultimate load design for seismic isolation structures	Development of analysis method for fragility evaluation after damper devices (SD) damaged is needed. • Development of seismic response analysis after SDs damaged Analysis methods are needed for evaluating the fragility of seismic isolation (SI) at the ultimate state and after rupture.	for seism	ponse analysis an ic isolation struct device-fail timate seismic	Test Result of dampe Id model experiments ures after damping- ures response analysis of SI and SD ①②△ sile ruptured analysis	Development of seis	smic isolation and v suitable for an eart ry, such as in Japan	:hquake-
	Development of 3D-FEM technology of SI rubber bearing	Developr	ment of 3D finite of chnique of rubbe	element analysis			/

8-6. Seismic/Earthquake Resistance (Equipment) ∨: R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2)

Item	Gap/Solution	~2023	2024	2025	2026	2027	2028~
Rationalization of seismic design methods for equipment and piping systems	Due to the increase in base earthquake ground motions, it has become necessary to develop more sophisticated methods for evaluating the seismic safety of equipment and piping systems. • Development, practical application, and standardization of evaluation methods that take elasto-plasticity into account • Development of a rational evaluation method for large amplitude sloshing loads	Research on the a standardization of m the elasto-plasticity piping system for we joints (1) Development of a fatigue evaluation method for welded joints Practical application plastic evaluation Simple evaluation Rationalization of a fatigue evaluation	Practical application methods for evaluation methods for evaluating y of equipment and ems Phase3 lded Tion of the piping in method To the piping elastosition method To	Research on the advator evaluating the elevation of elasto-plastichods for piping (1) 2) Research on the advator evaluating the elevation of t	Advancement of fatigue evaluation methods for welded joints Standardizarevaluation methods for welded joints Advanced and stan me Inclusion in JSM ethod for large Improvem	Standardization of elas methor rdization of methods uipment and piping	
Advanced fragility evaluation of equipment and piping systems	Due to the increase in base earthquake ground motions, it has become necessary to develop more sophisticated methods for evaluating fragility in seismic PRA. • Development and standardization of fragility evaluation method based on detailed analysis • Development and standardization of Evaluation method of loss of offsite power fragility • Development of fragility evaluation method considering coupling of structures and components	Development of sime evaluation method for the properties of the pr	plified elasto-plastic or fatigue evaluation ation method ② Juation method using an indicator Ref	Development of s Clection of loss of off evaluation methods ge through papers for s Development and imfor evaluating the second seco	d standardized simple evaluation method evaluation method method for system fragility sin standardization provement of method for structuipment coupling	fragility evaluation is in standards 2 V	Studies towards standardization and criteria

9. Seismic PRA

Item	Gap/Solution	~2023	2024	2025	2026	2027	2028~
Development of seismic PRA methodology	PRA precision as a whole is determined by the elements (PRA models) with the lowest precision. • Using a model plant, conduct seismic risk quantification based on enhanced/ developed hazard and fragility evaluation results. Then, analyze the effect by those enhanced/improved models to risk quantification. Provide implementation methods and procedures. Uncertainties of SPRA models are not sufficiently optimized. • Develop a method to optimize SPRA-specific risk profile • Develop an optimized size o system model (e.g., SEL, seismic correlation) in SPRA	Development of SPRA methodology using a model plant (Phase 1) Implementation of developed foundation ground fragility evaluation Implementation of developed seismic hazard evaluation Implementation of developed piping fragility evaluation Stu		s and latest agility ilized. ②∇ Reflec	ealistic method regar ced/advanced PSHA n ic PRA implementation ement and support do it 2024) ement study of system ment methodology for ake-induced multi-hai y assessment method	g a model plant ding seismic nethodology on ocument for the m analysis for or earthquake-zards:	Development of a risk assessment methodology for earthquake- induced multi- hazards
		Enhancement of for civil 8-3. Seismic/Ear	quake Resistance (So of fragility evaluation n engineering structures thquake Resistance ility evaluation of grou	nethods Ground			

10. Tsunami (Hazard and Fragility)

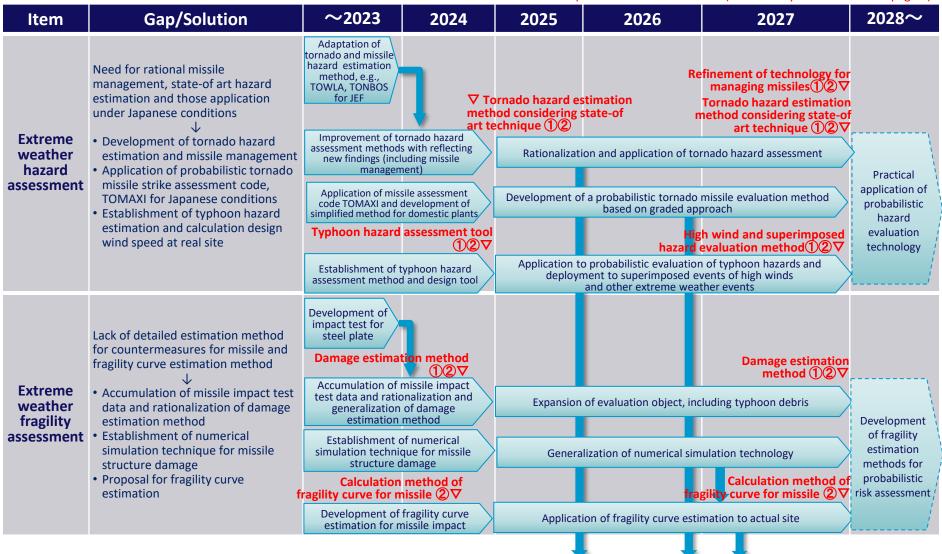
$ riangledown$: R&D outcome and specific area of contribution (indicated by number $ ilde{ t 1}$ - $ ilde{ t 5}$ in p									
Item	Gap/Solution	~2023	2024	2025	2026	2027	2028~		
	Organization on uncertainty in judgements of event deposits is insufficient.	unce	ysis technologi rtainty in judg t deposits ①② ▽	ement for		Advanced analysis on uncertainty in ju event deposits	udgement for 2) 7		
	 Increase knowledge on field survey on event depots, and organization of uncertainty of the results 	Development of methods on Judgement for event deposits including tsunamis		Upgrade of methods	on judgement for event tsunamis	deposits including	Systemization of methods on judgement for event deposits including tsunamis		
Tsunami hazard assessment	Knowledge on numerical simulation technologies for non-seismic tsunamis and methodologies of Probabilistic	Three-dimens Eulerian appro		Three dimensional Lagrangian approach	es ①② Pract nume	ical application of 2E erical simulation tecl	D/3D nnology ①②		
	Tsunami Hazard Analysis (PTHA) for them are insufficient. ↓ • Development of numerical	Development of simulation technology landslide to	nologies for	Practical application	n of numerical simulation landslide tsunamis	n technologies for	Upgrade of numerical simulation technologies for landslide tsunamis		
	simulation technologies for non- seismic tsunami • Development methodology for	Methodology non-seismic t	of PTHA includes sunamis ①②	method	al of PTHA dology including non- tsunamis ①② ▽				
	PTHA including non-seismic tsunami	Developme	nt of methodolog	gy of PTHA including non	-seismic tsunamis	Systemization of m including non-	ethodology of PTHA seismic tsunamis		
	Knowledge for fragility evaluation	simulation	de of tsunami n technologies ntake) ①②▽	techno	of tsunami simulation logies (Hybrid 2D&3D proper usage) ①②▽				
	method considering various tsunami		Upgrade of tsu	nami simulation technolo	ogies	Gathering the latest kr of tsunami simul	nowledge and advancing ation technologies		
Tsunami	effects is insufficient. Novel technologies on tsunami impact assessment needs to be verified.	methods of effects (1)	tion of evaluat of debris collisi ② (JSCE) ▽	on Publication o	of technical reports on oris collision effects ①	evaluation method ② (JSCE, JEAC) ∇	Ş		
fragility assessment	 Upgrade of tsunami simulation technologies by considering novel knowledge 	Developm systemization of methods of de effec	of evaluation bris collision	Systemization of eva	aluation methods of deb (Phase 2)	ris collision effects	Upgrade of evaluation methods of debris collision effects		
	 Upgrade of evaluation technologies for tsunami debris impact Accumulation of novel knowledge and verification of them 	Evaluation r wave force l with high se concentration	by tsunami si	pgrade of collision mulation technologie or small boat ①②	s risk asse	e of probabilistic essment methodolog dary influence	y .		
			Study on seco	ondary influence assessm	ent				

11. Tsunami PRA, and Seismic and Seismically-Induced Tsunami PRA

			V . N&D Outcome	and specific area	or continuation (ii	idicated by Hullibe	i 🛈 🥹 iii page 2)
ltem	Gap/Solution	~2023	2024	2025	2026	2027	2028~
Development of methodologies	Accumulation knowledge and upgrade of methodology on tsunami PRA are necessary. • Trial of tsunami PRA using a model plant	knowled PRA and related		Accumulation	of knowledge on t	Standardization of methodology of PRA (AESJ)	
of tsunami PRA	•	Accumulation and upgrade of tsunami PRA using BRW i		methodology and e		V.	application of tsunami PRA methodology to actual plants
Development of PRA methodology against combination of earthquake and seismic – induced	No PRA method has been developed worldwide considering combination of earthquake and seismicinduced tsunami.	Hazard and fragility evaluation method against combination of arthquake and tsunami (Basic method) ② PRA front-end process, elemental technology development Overall scenario building, model analysis Development of basic evaluation method for hazard, fragility, accident	▼ Concept of technical element evaluation for earthquake and seismic-induced tsunami PRA ②	ts,		nd practical application	
tsunami	Reflection in standards	sequence, and relevant technical elements considering superposed external hazards				nd seismically-induce	

12. Volcanic Ash-Fall Risk Analysis

Item	Gap/Solution	~2023	2024	2025	2026	2027	2028~	
Tec.III		GUI software for	Long-term floating mechanism	Tracking method for floating pumice ②▽	Propose new ash include revised in extrpolatio	n-fall database to nterpolation and n methods ②∇	Develop eruption intensity and particle transport	
	• Update volcanic ash-fall database and analytical software	Improve ash-fal hazard Study floating pur	curve.	Develop assessmen transport dis	t method for eruption stance of volcanic a Density of ash particles 2 \(\neg \)		assessment based on magmatic properties.	
analysis of volcanic ash-		Propose wind			nt method for phys particles and floati		Develop assessment method for deposit load and settling in water.	
fall	 Develop hazard curve based on ash-cloud transport analysis 	distribution application method②∇	Propose vertical distribution of ash particles 2 ∇	•	urve based on ash-		Develop hazard	
	Develop hazard assessment method from floating and suspended volcanic ash particles			all based on ash-			erical model 2 🗸	curve by ash-cloud transport analysis that include co-
		Propose Propose assessment assessment		dispersion from	ical analysis model large-scale eruptior nimbrite ash cloud)	for ash-cloud ns (Include co-	ignimbrite ash	
	Need to assess particle ingestion	method for spherical particles. ①②▽	method for volcanic ash particles. ①②▽	Propos	e simple analysis n	nethod ①②▽		
Vulnerability assessment to volcanic	to air intake system, and to reduce the frequency of filter exchange.	the amount of ash intake system	to enter the air	Develop simple num	facility.		Improve efficiency of particle separation	
ash-fall	Develop assessment method for particle ingestion and develop long-life pre-filter	Design long-life pre ash par			ropose particle seponeration		measures for air intake facilities	
Volcanic	'							
eruption and ash-fall PRA	Yet to be performed. ↓ • Develop preliminary PRA model and its guideline		Extract gap sub-models volcano P	s for Deve	elop volcanic ash-fa	ideline for volcanic ash-fall PRA ②∇ II PRA model	Develop volcanic eruption PRA model	

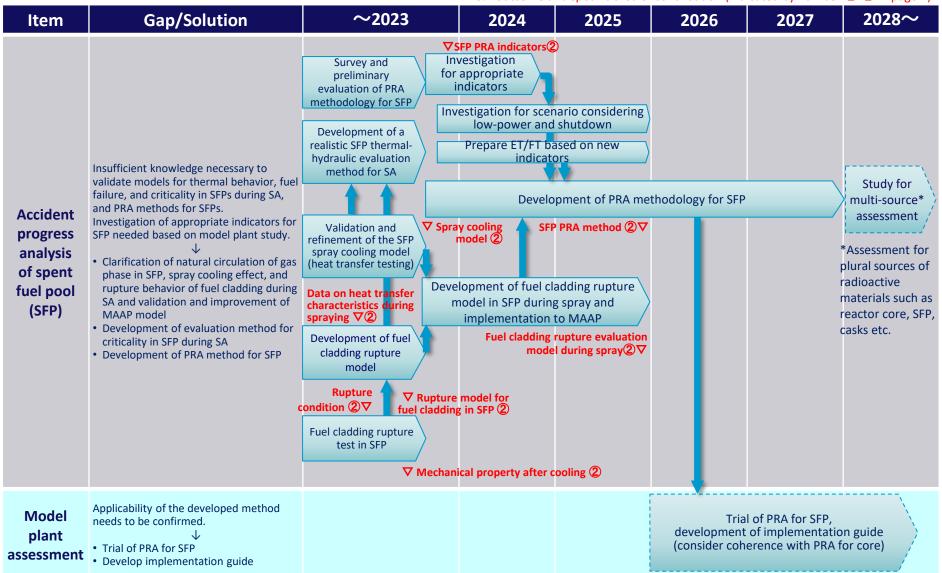


13. Extreme Weather such as Tornadoes (Hazard and Fragility)

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2)

High wind PRA technique

13. Extreme Weather such as Tornadoes (PRA)


 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2)

ltem	Gap/Solution	~2023	2024	2025	2026	2027	2028~
High wind PRA technique	Undeveloped practical code for high wind PRA for Japanese conditions ↓ • Establishment of tornado PRA technique with application for real site under Japanese conditions • Development of calculation and input tool of hazard information for Japanese tornado PRA • Generalization of Japanese tornado PRA method	Conduct deta PRAs at repres in Japan for g	and fragility ation tool for do PRA ② V	Support and systematiz actual equipm	zation of application of to ent with extension for to Improving th hazard and fra	pyphoon event ne convenience of the agility estimation tool for tornado PRA② ✓	Integration of probabilistic high wind risk assessment techniques

Extreme weather hazard and fragility assessment

14. Spent Fuel Pool Risk Analysis Method Development

15. Development of RC Method Considering Energy Security and Radiation Risk

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page

abla: R&D outcome and specific area of contribution (indicated by number										
Item	Gap/Solution	~2023	2024	2025	2026	2027 2028~				
Development of SNS utilization measures in RC practice	Utilities see SNS as a promising tool for communicating about nuclear power to the younger generation and child-rasing population but have yet to find a way to make use of it in RC. • Development of SNS utilization strategies in RC practice	Strategies for construction of local SNS community with a sense of trust ⑤ ▽ Investigation of the construction and operation process through the trial of an experimental SNS community	Results of analysis of responses to energy security and other content in local communities Analysis of responses to SNS content including nuclear power	Interaction strategies and effective content delivery strategies for each SNS Study of measures to provide contents for SNS types	Utilization of SNS by utilities ⑤∇ Development of SNS utilization strategies in regional dialogue					
Development of measures to provide information on radiation risks	Need to build trust in the protective measures and safety improvements to bridge the gap in knowledge between senders and receivers of information on radiation risk, which is a growing concern for local residents before and after the restart U • Development of measures to provide information on radiation risks	Risk communication guide for trust and regional dialogue on nuclear power 5 V Development of dialogue technique for risk information	Survey results of public perception of radiation risk Survey of public perceptions of radiation risk	Survey results of evacuation behavior, Analysis results of sender and receiver discrepancies Survey of behavior regarding radiation risk, analysis of sender and receiver discrepancies	Strategies for providing information on radiation risks (5) V Development of information provision measures using Level 3 PRA	Development of RC methods that incorporate the concept of risk for building public confidence in nuclear energy (Items to be implemented based on the results of the research needs survey)				
Creation of knowledge that contributes to solving practical issues in regional dialogue	Need knowledge of risk messages related to risk management of nuclear power plants, etc., that are timely and responsive to changing social conditions associated with nuclear energy policy and restart of nuclear power plants • Timely provision of knowledge on risk messages that respond to practical issues related to RC	Survey technique for validation of RC strategy of utilities Development of survey technique for validation of utilities' RC strategy by collaboration at a pilot site	in respo ⑤ ▽ Qualitative/quantita on risk messages b and	s obtained through research to RC practical issuative research and dialogous desired on the identification of the practical issues of ut a on each utility's needs	gue experiments on of the needs					

RC: Risk Communication SNS: Social Networking Service

© CRIEPI

NRRC

Utility

[Legend]

16. Expansion of the Scope of RIDM Process Application

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2) ~2023 2028~ Item **Gap/Solution** 2024 2025 2026 2027 International trend survey * Among the actions for application to actual plants, OLM Guide is developed by the NRRC. The Nuclear Energy OLM has not yet been Case study of OLM Association (ATENA) is considering the application of OLM introduced in Japan. (EDG, filling pumps, etc.) to actual plants, including other efforts. **Online ▽**Revision of the Guide4 **▽**Revision of the Guide4 OLM Guide **4** ∇ Examination of specific cases Maintenance Establishment of Revision of OLM Guide base on domestic and (OLM) OLM Guide (Case additions and feedbacks from application) international situations Development of OLM Guide for domestic plants Application to actual plants (*) International trend The leak rate test (Type A) for survey, study of the entire CV is conducted domestic application once per outage or every three measures outage. In US, test interval can Extension of Report on trial be extended to 15 years risk evaluation $\textcircled{4}\nabla$ containment maximum, based on risk Trial risk evaluation based on domestic test data assuming vessel leak information. extended CVLRT intervals, etc. rate test (CVLRT) · Based on domestic test data, Support for application to actual plants interval confirm feasibility through risk impact, assessment when Application the test interval is extended. to actual • Support for actual application plants Evaluate the impact of Pilot plant trial evaluation, The impact of introducing RI-ISI proposal of methods for introducing RI-ISI, identify to Japanese NPPs need to be issues for application solving issues for application/ known. Domestic codes and Risk-informed guides are not established yet. inservice Support the establishment Support the revision inspection of domestic codes of domestic codes · Evaluate the impact of (RI-ISI) introducing RI-ISI. Application Support the establishment of to actual domestic codes. plants

17. Development of Integrated Risk Assessment Technology

 ∇ : R&D outcome and specific area of contribution (indicated by number ①-⑤ in page 2) ~2023 2028~ **Gap/Solution Item** 2024 2025 2026 2027 In Japan, RIDM implementation Practical application cases of IRIDM and risk assessment 4 strategy has not been established based on a full-Survey of foreign case studies of scope assessment of overall integrated risk assessment plant risk and its contributing and RIDM practices Draft guidance on factors. **Development** integrated risk of practical Organize the concept of assessment 4∇ guidance for integrated RIDM, integrated integrated risk risk assessment, and risk Development of draft guidance on Establishment of guidance on aggregation (including integrated risk assessment integrated risk assessment assessment interpretation of and response to uncertainty), and develop practical guidance for integrated risk assessment to realize it Case study of guidance and methodology There is no methodology or (trial at a model plant) Knowledges of existing methods and technique to embody technologies for risk aggregation 2 integrated risk assessment and risk aggregation from the domestic business model. Survey of foreign case studies (methods and technologies) related to risk aggregation **Development** · Collection of existing of a method knowledge (methods and for integrated technologies) to embody risk integrated risk assessment Methodology development assessment Identification of technical issues on Development of methodology and through identification of risk aggregation and plans toward technology for integrated risk issues in embodiment of integrated risk assessment their solution measures assessment Technical issues on risk aggregation and solution measures 2∇

