Validation of Groundwater Dating Method Using ³⁶Cl for Low Permeable Rock

Background

On safety assessment of high level waste disposal, groundwater flow is important for evaluation of radionuclide transport (Fig.1). The groundwater flow in candidate rock for waste disposal is expected to be stagnant, thus collecting water for chemistry analysis would be difficult. Therefore, we have researched groundwater dating methods using ³⁶Cl and ⁴He which are applicable from tens of thousands to million of years (Fig.2), and developed these methods for low permeable rock. We have already established the ⁴He method for low permeable rock. It is necessary to establish the ³⁶Cl method.

Objectives

The purpose of this study is to validate the developed ³⁶Cl dating method for application to low permeable layers in the Great Artesian Basin.

Principal Results

The Great Artesian Basin is suitable for validating groundwater dating methods because it has relatively simple geological formation and is stable over the long term. We conducted borehole investigation at Richmond and Marree in the Great Artesian Basin (Fig.3). We collected core samples and applied ³⁶Cl method that we developed for low permeable rock.

1. ³⁶Cl sample collecting method from low permeable rock

Squeezing and leaching were conducted for collecting ³⁶Cl sample from low permeable rock. The ³⁶Cl concentrations of squeezing and leaching are consistent with each other. Therefore, it is confirmed that water sample could be collected by squeezing and leaching (Fig.4).

2. Profile of ³⁶Cl and transport mechanism

The Profile of ³⁶Cl was investigated. ³⁶Cl concentration decreases with depth exponentially. It was presumed that ³⁶Cl was supplied by rain and transported by diffusion with radioactive decay (Fig.5). The profile of ³⁶Cl was expressed by exponential function using diffusion-equation under steady state. Moreover, the profile of ³⁶Cl could be reproduced by diffusion equation using diffusion coefficient and porosity measured in laboratory test (Fig.6).

3. Characterizing groundwater velocity through low permeable rock using ³⁶Cl

The validity of 36 Cl dating developed for low permeable rock was confirmed by no difference between colleting methods and reproducibility of the 36 Cl profile. From Peclet Number with diffusion dominant condition, the groundwater velocity is quite smaller than 7×10^{-14} m/s at Richmond and 2×10^{-13} m/s at Marree, respectively. From these results, the very slow groundwater flow was proved in low permeable layer.

This study entitled 'Research and development on groundwater dating technique' was done under contracts awarded from METI (Ministry of Economy, Trade and Industry).

Future Developments

Developed ³⁶Cl dating method for low permeable rock will be conducted in Japan to confirm applicability and usefulness of characterization on very slow groundwater flow.

Main Researcher: Takuma Hasegawa, Ph. D.,

Research Scientist, Nuclear Fuel Cycle Backend Research Center, Civil Engineering Research Laboratory

Reference

Research and development of groundwater dating (Part 8) - Validation on ³⁶Cl dating method to characterize low permeable layer-, Civil Engineering Research Laboratory Rep. No.N07038. (in Japanese)

5. Nuclear

Fig.1 Concept of waste disposal in deep geological formation

Very slow groundwater flow is expected in deep geological formation, therefore waste facility plan to construct over 300 m in depth

Fig.3 Location of borehole in Great Artesian Basin

Fig.5 Transport mechanism of ³⁶Cl ³⁶Cl concentration is almost constant near surface, and is transported by diffusion with radioacitive decay in underground.

Distance from recharge area (L)

Fig.2 Concept of groundwater dating method ³⁶Cl has half-lives with 301,000 year, groundwater age are determined by concentration change due to radioactive decay

Fig.4 Comparison of sampling method for ³⁶Cl/Cl Squeezing: water depleted by compressing Leaching: exchange water by diffusion

Fig.6 Profile of ³⁶Cl concentration Measured data was reproduced by diffusion equation using diffusion coefficient and porosity measured in laboratory test (Red line).