# Probabilistic Safety Assessment and Risk Management

### George Apostolakis Head, Nuclear Risk Research Center, Tokyo <u>apostola@mit.edu</u> http://criepi.denken.or.jp/en/nrrc/index.html

Presented at the IAEA Technical Meeting on MUPSA Vienna, Austria October 7-10, 2019



© CRIEPI

### **Risk Management**

- "Deterministic" approach
  - Design basis accidents
  - Defense in Depth
  - Safety margins
- Risk-based approach
  - What can go wrong? (thousands of accident sequences or scenarios as opposed to the limited number of DBAs)
  - How likely are these scenarios? (identify risk-dominant scenarios and manage them)
  - What are their consequences?



# **Risk-Informed Framework**

Traditional "Deterministic" Approach

 Unquantified probabilities
 Design-basis accidents
 Defense in depth and safety margins

 Can impose
 unnecessary
 regulatory burden
 Incomplete

 Risk-Informed Approach

 Combination of traditional and riskbased approaches through a deliberative process Risk-Based Approach

 Quantified probabilities
 Thousands of accident sequences
 Realistic
 Incomplete



© CRIEPI

### **Deliberative Decision Making**



NUREG-2150, A Proposed Risk Management Regulatory Framework

CRIEPI

Central Research Institute of

# **Risk-Informed Decision Making (1)**

### • USNRC

- RIDM: Insights from PRA are considered with other engineering insights in decision making.
- Regulatory Guide 1.174 (1997) provides guidance.
- Industry
  - Ensure that the Safety Goals and applicable regulations are met.
  - A PRA may reveal credible vulnerabilities to the utility staff.



# Early Applications (before RG 1.174)

### • Industry (1981)

- > Plant-specific PRAs provide insights.
- A seismic initiated interaction of adjoining buildings could lead to the collapse of the main control building. A simple structural modification was implemented to damp the interaction between the two buildings.
- The fire contribution to CDF was deemed to be too high.
   A simple plant modification reduced this contribution.

### • USNRC (1980s)

- Generic regulations.
- Two rules (ATWS and SBO) based on WASH-1400 findings and operational experience.



# **Risk-Informed Decision Making (2)**

- PRA insights are considered with other engineering insights to inform decision making.
  - Key word: "considered"
  - The decision is based on judgment
- What shapes this judgment?
  - The credibility and acceptability of PRA and other engineering insights
  - Individual PRA results can be credible and acceptable
- Fire PRAs for power operations are used by the NRC and industry to make risk-informed decisions

This use indicates that FPRA is credible and realistic enough for decision making





# ACRS Letter, April 2004 (1)

- The Quantitative Health Objectives (QHOs) apply to the site as a whole. The sum of the contributions from each reactor on the site to acute and latent fatalities should be bounded by the QHOs.
- The Committee has not reached consensus on the approach that should be taken to determine the core damage frequency (CDF) goal. Two views are presented in the discussion below.



# ACRS Letter, April 2004 (2)

### Option 1

- The site goal (e.g., 10<sup>-4</sup> per ry) is divided by the number of units at the site.
- The risk from and the likelihood of a core damage accident at all sites cannot be precisely equal. However, there is the expectation that they be comparable.
- Option 2
  - CDF is an accident prevention goal and its value should be the same for each reactor at every site.
  - Requiring each module to have a CDF value given by the overall CDF goal divided by the number of modules introduces a new Safety Goal concept, a site CDF. Such a concept was never intended to be part of the Safety Goals.



# **My View**

- The Qualitative and Quantitative Health Objectives are a statement of the societal acceptability of NPP risks.
- They should be met including all hazards at the site.
- CDF and LERF (or similar metrics) balance accident prevention and mitigation for any given site (defense-in-depth).
- LERF or any other metric of release should be a site goal.
- CDF should still be per reactor year.



## The IAEA MUPSA Methodology

- A significant step forward.
- As expected at this stage of development, further improvements and refinements will occur.
- The methodology is not ready to be used in generic regulatory decision making.





## Multi-Unit Risk Management: Industry

|                     |                         |                        | Initiating event |                                  |             |                        |                     |                        |           |                |
|---------------------|-------------------------|------------------------|------------------|----------------------------------|-------------|------------------------|---------------------|------------------------|-----------|----------------|
|                     |                         |                        | SLBO             | Fire in the<br>D turbine<br>hall |             | LOOP (SFT<br>approach) |                     | LOOP (MET<br>approach) | Sei<br>ev | ismic<br>vents |
| CDF                 | for                     | Unit 1                 | 2.56E-08         | 7.65E-07                         |             | 1.13E-06               |                     | 1.13E-06               | 1.5       | 8E-04          |
| Unite               | s 1&2                   | Unit 2                 | 9.84E-08 2.9     |                                  | 3E-06 1.13E |                        | E-06 1.13E-06       |                        | 1.58E-04  |                |
| onits<br>("o<br>uni |                         | Units 1&2              | 1.87E-10         | 6.4                              | 6E-09       | 1.68E-08               |                     | 1.68E-08               | 1.3       | 2E-04          |
|                     | ld"<br>ts)              | R <sub>2</sub> ("old") | 7.30E-03         | 8.4                              | 4E-03       | 1.49E-02               |                     | 1.49E-02               | 8.3       | 5E-01          |
|                     | E                       |                        |                  | Base case                        |             | S                      | Sensitivity<br>case |                        |           |                |
|                     | CD12 for seismic events |                        |                  |                                  | 1.32E-4     |                        | 9.65E-5             |                        |           |                |

From: IAEA, "MUPSA for New and Existing Reactor Facilities," Vienna, 2019.

- The plant-specific numbers for seismic failure are high and exceed the safety goal for CDF.
- They should prompt plant management to explore further these results and, possibly, take action.

## **My Numbers Concern**

| Case Description  | Unit 1   | Unit 2   | Units 1<br>and 2<br>(old) | Unit 3   | Units 4  | Units 3<br>and 4<br>(new) | Units 1,<br>2, 3 and 4 |
|-------------------|----------|----------|---------------------------|----------|----------|---------------------------|------------------------|
| LOOP (SFT Method) | 1.17E-06 | 1.17E-06 | 3.64E-08                  | 7.47E-07 | 7.47E-07 | 3.67E-09                  | 8.02E-15               |
| LOOP (MET Method) | 1.17E-06 | 1.17E-06 | 3.64E-08                  | 7.47E-07 | 7.47E-07 | 3.67E-09                  | 8.02E-15               |

From: P. Hlavac, "Results of quantifications of the MUPSA model," presented at the Third Meeting on Phase II – MUPSA Case Study Vienna International Centre, August 06 to 09, 2018.

- What does 10<sup>-15</sup> mean?
- Age of the earth: 4.6x10<sup>9</sup> years
- Low numbers are credible when supported by statistics and acceptable models
  - Asteroids with diameter 3 miles strike the earth every 20 million years (5x10<sup>-8</sup> per year)
  - This is not the case with PRA.

### Analysts are concerned

- NUREG 1150 (Peach Bottom): "Core damage frequencies below 10<sup>-5</sup> per ry should be viewed with caution because of the remaining uncertainties in PRA (e.g., events not considered)."
- NEI 18-04 (LMP): "Event sequences with frequencies less than 5 × 10<sup>-7</sup>/plant-year are retained in the PRA results and used to confirm there are no cliff edge effects. They may also be taken into account in the RIPB evaluation of defense-in-depth."
- The NuScale approach employs a 10<sup>-6</sup> per year threshold for identifying incredible core damage events.
- French researchers: "practically eliminated"



## **Questions posed at RIC 2019**

- Should the USNRC Office of Nuclear Regulatory Research establish a project to address PRA limitations due to incompleteness, very low frequencies, their meaning, and their regulatory treatment?
- Should we establish a *de minimis* frequency level and how would it affect the regulations and the reporting of PRA results?
- <u>Today's addition</u>: Should the IAEA undertake a similar initiative?
- Note: de minimis, "lacking significance or importance: so minor as to merit disregard," Merriam Webster Dictionary.

