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要約

これまでの電力需要分析では、全国もしくは都道府県レベルのデータを用いた分析が行

われてきた。しかし、近年では、市区町村別需要電力量（電力調査統計）が公開され、市

区町村レベルの分析が行える可能性が出てきている。今後、国土交通省で公開されている

メッシュデータなどと組み合わせることで、より詳細な地域別の電力需要分析が行えると

考えられる。さらに空間データの収集・公開が進むとともに、空間データを分析する手法

もまた、発展を遂げてきた。その中で、本研究では、関東地方の市区町村別電力需要デー

タを例に、空間計量経済学の知見に着目し、空間構造を適切に考慮したモデルを用いるこ

との意義を検証する。

本研究では、市区町村別低圧需要電力量（関東地方（1 都 6 県））と、経済、気温要因

などの関係について、分析を行った。モデルの推定結果から、誤差項に空間構造を考慮し

た空間エラーモデルが最良なモデルとして選択され、空間構造を考慮していないモデルと

比べて、モデルの当てはまりの良さを示す指標（モデル選択基準 AIC と BIC）が改善され

ることが確認された。さらに、市区町村別将来推計人口（2040 年、国立社会保障・人口問

題研究所）を用いて、低圧需要電力量の簡易シミュレーションを実施した結果、首都圏と

その他の地域で、低圧需要電力量の減少率に明確な違いが見られた。今回の分析結果より、

市区町村レベルのデータを活用し空間構造を考慮することで、価格・所得弾力性の推定や

シミュレーションによる増減予測について、より適切でより詳細な分析が可能になると考

えられる。
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1. はじめに 

これまでの電力需要分析では、全国もしく

は都道府県レベルのデータを用いた分析が行

われてきた。しかし、近年では、市区町村別

需要電力量（電力調査統計）が公開され、市

区町村レベルの分析が行える可能性が出てき

ている。 

 国土交通省でも、地形、土地利用、公共施

設、交通など国土に関する基礎的な空間情報

のデータをインターネットで無償提供してい

る。これらの地理情報データと電力需要デー

タを組み合わせることで、これまでよりもよ

り詳細な地域別の需要分析が行えると考えら

れる。 

 さらに、空間データの収集・公開が進むと

ともに、空間データを分析する手法もまた、

発展を遂げてきた。その中で、本研究では、

空間計量経済学の知見に着目し、空間構造を

適切に考慮したモデルを用いることの意義を

検証する。 

 本研究では、電力調査統計で公開されてい

る市区町村別需要電力量の中から、関東地方

（1都6県）を対象とした低圧需要電力量デー

タ（2022年4月～2024年3月）を用いて、経済、

気温要因などの影響について、空間計量経済

モデルを用いた分析を行う。 

次節では、電力需要分析に関する先行研究

の確認を行い、第3節では、空間計量経済モ

デルを用いた電力需要分析の特徴及び、分析

方法について概説する。第4節では、本研究

で用いる分析データについて説明する。第5

節では、モデルの推定結果、第6節では推定

モデルを用いた簡易シミュレーション分析の

結果について述べる。最後に、分析結果のま

とめを行う。 

2. 先行研究 

はじめに、都道府県別の電力需要を対象と

した計量経済分析の先行研究を確認する。谷

下（2009）では、家庭用需要電力量に対する

価格弾力性の地域別推定を行っている。この

研究では都道府県別データ（1986年～2006年）

を利用し、需要電力量と価格、消費支出、冷

房度日、前期の需要電力量、平均世帯人数、

灯油価格、ガソリン価格、人口密度との関係

について、パネルデータ分析を行っている。

さらに、Nakajima（2010）も家庭用需要電力

量を対象とし、都道府県別データ（1975年～

2005年）を用いて、需要電力量と価格、可処

分所得との関係についてパネルデータ分析を

行っている。Okajima and Okajima （2013）、

Otsuka and Haruna （2016）では、都道府県別

データを用いて、先行研究で使われていたパ

ネルデータ分析を拡張した動学的パネルデー

タ分析を実施し、家庭用需要電力量を対象と

した価格弾力性や所得弾力性の推定を行って

いる。また、Otsuka （2015）では、産業・業

務用需要電力量を対象とし、価格弾力性・生

産弾力性の推定を行っている。 

次に、国内の需要電力量（総計）を対象と

した時系列分析の先行研究に着目する。例え

ば、Wang and Mogi（2017）、Honjo et al. 

（2018）では、可変パラメータを考慮した動

学的線形回帰モデルを利用して、産業用と家

庭用需要電力量の分析を行い、価格弾力性と

所得・生産弾力性の経年変化について分析を

行っている。 

国内の電力需要を対象とした先行研究では、

全国もしくは都道府県レベルのデータを用い

た研究が多く、空間計量経済学の知見を活用

し、電力需要と経済、気温要因などの関係に

ついて分析を行った先行研究は確認できなか

った。そこで、空間計量経済モデルを用いた
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電力需要分析について、海外の先行研究を確

認すると、Gomez et al.（2013）では、スペイ

ンの46地域（2001年～2010年）を対象に、家

庭用需要電力量と、価格、可処分所得、ガス

利用比率、人口、平均世帯人数、冷房度日、

暖房度日の影響などを分析し、隣接地域の家

庭用需要電力量が増えると、自地域の需要も

増える傾向（正の空間相関）があることを示

している。さらに、Park and Yun （2022）で

は、韓国の225市区町村（2010年～2019年）

のデータを用いて、家庭用需要電力量の分析

を行い、都市部と、その隣接地域の消費パタ

ーンは類似し、平均世帯人数、既婚率、集合

住宅の割合による影響が強いことを示してい

る。 

3. 空間計量経済モデルを用いた電力

需要分析 

本節では、空間パネルデータ分析で頻繁に

使われる空間計量経済モデルについて概説す

る。はじめに、地域 □ = 1, … ,□、時点 □ =
1, … ,□とするとき、被説明変数□□（例：市区

町村別需要電力量）、説明変数□□（例：価格、

所得、気温、人口）、地域別固有効果□を以

下のような行列表記で表す。 
 

□□ = □
□1□□2□⋮□□□
□ ,       □□ = □□11□ ⋯ □1□□⋮ ⋱ ⋮□□1□ ⋯ □□□□□,        

 

      □ = □
□□□□⋮□□
□        

 
ここで、分析に用いる説明変数の数を□とす

る。 

パネルデータ分析では、説明変数□□だけで

は捉えきれない地域間差異を固有効果

（individual effect）と呼び、□と表現する。固

有効果□をパラメータとして推定する場合、

固定効果と呼び、確率分布として推定する場

合、ランダム効果と呼ぶ（詳細は Baltagi 2013

を参照）。 

このとき、地域固有効果□を固定効果とし

て表現したモデル（e.g., Elhorst 2003, 2014, 

Lee and Yu 2010）は、以下の様に表される。 

 
固定効果を含むケース 

 □□ = □□□□□ + □□□ + □ + □□ (1) 
   □□ = □□□□□ + □□ (2) 

 
ここで、誤差項□□に独立で同一な確率分布

□□□~IID(0,□□□)を仮定する。また、隣接地域と

の空間相関を表現するために、以下のような

隣接行列（□ × □）を用いる。 
 

□□ = □ 0 ⋯ □1□⋮ ⋱ ⋮□□1 ⋯ 0 □, 
 

 □□ = □ 0 ⋯ □1□⋮ ⋱ ⋮□□1 ⋯ 0 □ 
 

ここで、隣接行列の対角要素は全て0となり、

非対角要素は、2つの地点の地理的距離をウ

ェイトとして表現している。本研究では、2

つの地域が接していれば1、そうでなければ0

とし、隣接行列の各行の和が1となるように

行基準化したものを用いる。隣接行列の設定

方法に、厳密なガイドラインは存在しないも

のの、空間計量経済学の分野では、行基準化

したものが頻繁に使われることから、本研究

でもそれに倣い、設定している（詳細は瀬

谷・堤 2014を参照）。このとき、□□□□□は、

隣接地域の被説明変数が自地域に及ぼす影響

を表し、パラメータ□（|□| < 1）が正値のと

き正の空間相関、負値のとき負の空間相関が
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あると考えられる。同様に、□□□□□は、誤差

項□□に関する空間相関を表現し、パラメータ

□（|□| < 1）が正値のとき正の空間相関、負

値のとき負の空間相関があると考えられる。 

 次に地域固有効果□をランダム効果として

表現したモデル（e.g., Kapoor et al. 2007, Mutl 

and Pfaffermayr 2011, Baltagi and Liu 2011 ）は、

以下の様に表される。 

 
ランダム効果を含むケース 
 □□ = □□□□□ + □□□ + □□ (3) 
  □□ = □□□□□ + □□ (4) 
 

 □□ = □ + □□ (5) 
 
ここで、地域固有効果□と誤差項□□は、それぞ

れ、独立で同一な確率分布□□~IID□0,□□□□と
□□□~IID(0,□□□)を仮定し、地域固有効果□□と誤差

項□□□は独立であると仮定する。 

空間計量経済学では、□ ≠ 0,□ = 0のとき空

間ラグモデル、□ = 0,□ ≠ 0とき空間エラーモ

デル、 □ ≠ 0,□ ≠ 0 のとき SARAR（ Spatial 

AutoRegressive with AutoRegressive disturbances）

モデルなどと呼ばれる（詳細は Anselin 1988、

瀬谷・堤 2014、村上 2022を参照）。   

本分析では、隣接する市区町村の電力需要

が高いと、それを受けて自市区町村の需要も

高くなる（低くなる）、といった、被説明変

数同士の相互作用を仮定している「空間ラグ

モデル」、住宅ストック構造や設備保有率な

ど、モデルに含めていない隣接地域の未観測

要因などにより、誤差項に空間相関が生じる

と仮定した「空間エラーモデル」、空間ラグ

項と空間エラー項の両方を導入した「SARAR

モデル」の3種類と、それらにパネルデータ

分析で用いられる「固定効果」、「ランダム

効果」を組み合わせた、計6種類のモデルに

ついて推定を行った。さらに比較対象として、

空間構造を考慮しない「固定効果モデル」と

「ランダム効果モデル」、「線形回帰モデル」

の3種類のモデルについても推定を行った。 

4. 分析データ 

本研究では、市区町村別低圧需要電力量と

価格、所得、気温、人口などの関係について

分析を行う。対象地域は、関東地方（1 都 6

県）のみとし、2022年 4月から 2024年 3月ま

での月次データ（24 ヶ月）を利用する。ただ

し、東京都の離島（大島町、利島村、新島村、

神津島村、三宅村、御蔵島村、八丈町、青ヶ

島村、小笠原村）は、分析対象から除外し、

307 市区町村を用いる。さらに、先行研究と

同様に、分析モデルの被説明変数および説明

変数に対して対数変換を行い、価格弾力性や

所得弾力性の推定を行う。分析に用いる被説

明変数には、市区町村別低圧需要電力量

（307 市区町村×24 ヶ月）の対数値を用い、

説明変数には、価格、所得、気温、人口の対

数値を用いる。ただし気温に関しては、電力

需要は夏季と冬季に需要が増える傾向がある

ことから、市区町村別の月平均気温の平均偏

差（307 市区町村×24 ヶ月分の月平均気温か

ら求めた平均値との差）の絶対値を、他の説

明変数と同様に、対数変換したものを用いる。 

分析モデルの説明変数として用いる価格の

データは、電力・ガス取引監視等委員会で毎

月公表している販売電力量と販売額を用いて、

電力総合単価（低圧電灯）（円/kWh）を使用

する。分析対象が関東地方であるので、供給

区域は東京電力管内とする。さらに、分析に

は総合単価を毎月の消費者物価指数（2020 年

=100、総合）で除したものを用いる。このと

き、消費者物価指数は、県庁所在地別の指数

を、各都県の代表値として利用しているため、
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実質化された価格のデータは都県ごとに値が

異なる。 

次に、所得のデータは、「毎月勤労統計調

査（地方調査、事業所規模 5 人以上、調査産

業計）」より、都道府県別の現金給与総額

（常用労働者一人当たり）を消費者物価指数

（2020年=100、総合）で除したものを用いる。 

さらに、気温のデータは、気象庁が公表し

ている月平均気温（観測値）と、メッシュ平

年値を活用し、空間内挿法（クリギング）を

用いて、市区町村別月平均気温の推計を行っ

た（付録 A を参照）。メッシュ平年値は、降

水量、気温、最深積雪、日照時間、全天日射

量の 5種類の気象要素について、過去 30年間

の観測値から 1km メッシュ（3 次メッシュ）

ごとの平年値を推定・算出したものである。

分析には、観測所がある市区町村では月平均

気温の観測値を用い、観測所がない市区町村

では、空間内挿法による推計値を用いる。 

最後に、人口には、「住民基本台帳に基づ

く人口、人口動態及び世帯数」より、年別・

市区町村別の値を用いる。 

本研究の分析期間は、コロナ禍であり、節

電要請や節電ポイント施策など、需要行動に

影響し得る未観測変数の影響や、価格に関し

ては当月の価格のみを用いている点も留意が

必要である。 

5. 分析結果 

本分析では、パラメータの推定方法に、最

尤法（Elhorst 2003,2014, Millo and Piras 2012）

を採用する。最尤法以外にも、2 段階最小 2

乗法（2SLS）と一般化モーメント法（GMM）

を組み合わせた推定方法（ Kelejian and 

Prucha1998, Kapoor et al. 2007）も試みたが、

空間ラグ項のパラメータ（□、|□| < 1）が１

を超えるケースが見られたため、ランダム効

果（□□）と誤差項（□□□）に正規分布を仮定し、

最尤法を用いて、パラメータの推定を行った

（付録 B を参照）。また、空間ラグ項と空間

エラー項の隣接行列は、同じものを使用して

いる（□□ = □□）。さらに、予測誤差が比較

的大きい 1 月、2 月、6 月、12 月に関しての

みダミー変数を導入し、誤差項の系列相関を

調整している。予測誤差には、夏季と冬季の

気温感応度の違いや、気温変数だけでは捉え

きれない季節変動（例：年末年始）、もしく

は経済影響（夏季・冬季のボーナス支給によ

る影響）などが混在している可能性が考えら

れる。 

推定結果（表 1）を確認すると、所得弾力

性の符号条件が理論的に整合しないモデルが

散見された（モデル 1, 2, 5, 7, 8）。その一方

で、空間エラーモデル（モデル 3, 4）では、

モデルに含まれていない隣接地域における未

観測要因の一部を空間エラー項が吸収するこ

とで、所得弾力性の符号や大きさがより妥当

な方向に修正されている可能性が考えられる。   

また、推定結果よりモデル 6（SARARモデ

ル＋ランダム効果）の空間ラグ項のパラメー

タ（□）が負値で統計的に有意となっている。

空間ラグ項は、隣接地域の低圧需要電力量が

自地域の需要に及ぼす影響を表している。先

行研究（Gomez et al.2013、Park and Yun 2022）

では、隣接地域に住む需要家同士は類似した

消費行動をとると考えられ、推定結果は正値

となっている。空間ラグ項のパラメータ（□）
の推定結果が負値である場合は、隣接地域に

住む需要家が、電力消費量を増やすと、自地

域の需要家は電力消費量を減らす行動をとる

ことになる。また、推定結果が負値となった

要因として、空間ラグ項をモデルに導入する

ことで多重共線性が生じ、符号条件が負値に

反転した可能性も考えられる。このことから、

今回の分析だけでは推定結果の解釈が困難で
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あるため、モデル 6 は、分析モデルから除外

することとする。 

上記の理由により、パラメータの符号条件

に問題が生じていないと考えられるモデルは、

空間エラーモデルを用いたモデル 3 とモデル

4 のみとなった。両モデルの違いは、地域固

有効果（□□）にモデル 3 では固定効果、モデ

ル 4 ではランダム効果を採用している点にあ

り、推定されたパラメータの値は概ね類似し

ている。 

パネルデータ分析で使われる固定効果とラ

ンダム効果は、両者ともモデルに加えた説明

変数だけでは捉えきれない影響（欠落変数に

よる影響）を取り除くために使用されるが、

一般的には、固定効果は説明変数と相関があ

る欠落変数の影響を取り除くために使われ、

ランダム効果は説明変数と相関がない（独立

な）欠落変数による影響を取り除くために使

われる。そのため、固定効果を用いるか、ラ

ンダム効果を用いるか判断が難しい場合には、

ハウスマン検定が使われる。 

ハウスマン検定では、欠落変数による影響

を含むと考えられるモデルの誤差項と、モデ

ルに加えた説明変数との相関関係について、

統計的仮説検定が行われる。本分析では、パ

ネルデータ分析で使われるハウスマン検定を

拡張した空間ハウスマン検定（Mutl and 

Pfaffermayr 2011）を利用する。 

仮説検定の結果、帰無仮説（H□ : 説明変数

と誤差項は独立である）が、5%有意水準で

棄 却 で き な い （ □□ = 0.58, 自 由 度 8, p-

value=0.9）という結果となった。このことか

ら、説明変数と誤差項は独立である可能性が

高いことから、本研究では、ランダム効果を

 
表 1 モデルの推定結果 

    

  
***,**,* はそれぞれ、1％、5％、10％有意水準で統計的に有意であることを示す。 

切片項 -4.3998 *** -0.7042 4.8336 *** 3.0234 *** -0.5165 ***

価格 -0.0261 *** -0.0312 *** -0.2386 *** -0.2349 *** -0.0099 *** -0.3347 ** -0.1393 *** -0.1458 *** -0.1647 ***

所得 -0.0387 *** -0.0430 *** 0.0215 0.0193 -0.0159 *** 0.0527 -0.3112 *** -0.2910 *** 0.0042

気温 0.0099 *** 0.0108 *** 0.0079 *** 0.0082 *** 0.0039 *** 0.0052 *** 0.0786 *** 0.0782 *** 0.0722 ***

人口 0.4290 *** 0.5530 *** 1.0330 *** 0.9551 *** 0.2037 *** 0.8427 *** 0.7667 *** 0.9398 *** 0.9312 ***

1月ダミー 0.0299 *** 0.0330 *** 0.3385 *** 0.3370 *** 0.0100 *** 0.5034 *** 0.2214 *** 0.2243 *** 0.2478 ***

２月ダミー 0.0276 *** 0.0304 *** 0.3066 *** 0.3059 *** 0.0090 *** 0.4481 *** 0.2244 *** 0.2269 *** 0.2526 ***

６月ダミー -0.0112 *** -0.0120 *** -0.1967 *** -0.1961 *** -0.0028 -0.2843 *** -0.1017 *** -0.1106 *** -0.2391 ***

１２月ダミー 0.0235 *** 0.0260 *** 0.0541 0.0547 * 0.0094 *** 0.0783 0.1745 *** 0.1625 *** -0.0179

空間ラグ（λ） 0.8773 *** 0.8667 *** 0.9578 *** -0.4578 ***

空間エラー（ρ） 0.9073 *** 0.9053 *** -0.7238 *** 0.9575 ***

分散比（φ） 191.119 *** 4.726 *** 15.945 ***

対数尤度 11372 9917 11296 10412 11745 10574 6117 5365 2176

AIC -22724 -19811 -22573 -20800 -23468 -21121 -12216 -10708 -4333

BIC -22662 -19736 -22511 -20725 -23399 -21041 -12160 -10640 -4271

空間ラグモデル 空間エラーモデル SARARモデル

モデル１ モデル２ モデル３ モデル４ モデル５

固定効果 ランダム効果

モデル9モデル６

線形回帰モデル
（空間ラグ＋空間エラー）

モデル7 モデル8

（空間ラグ、空間エラーなし）

固定効果 ランダム効果 固定効果 ランダム効果

ランダム効果モデル固定効果モデル
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含むモデル 4 を最良なモデルとして選択する。 

空間エラーモデル（モデル 4）は、誤差項

の空間相関を考慮することで、モデルに加え

ることができない変数（欠落変数、Omitted 

variables）によるバイアスを緩和している可

能性も考えられる（瀬谷・泊 2025, p.22、村

上 2022, pp.86-87）。推定結果を確認すると、

空間エラー項のパラメータ（□）は、統計的

に有意で正値となっていることから、誤差項

に正の空間相関がみられる。また、空間エラ

ーモデルの価格弾力性の推定結果を確認する

と、負値で統計的に有意である。その一方で、

所得弾力性は、正値ではあるものの、統計的

に有意にはなっていない。今回の分析期間

（2022年 4月～2024年 3月）では、2022年度

から2023年度にかけて、低圧需要電力量は多

くの市区町村で減少傾向であったが、所得は

概ね横ばい傾向にあったことから、所得の影

響を確認できなかった可能性も考えられる。 

次に、気温の推定結果を確認すると、空間

構造を考慮していないモデル（固定効果モデ

ル、ランダム効果モデル、線形回帰モデル）

と比べて、パラメータの推定値が小さいこと

が分かる。空間構造を考慮していないモデル

では、分析モデルに含まれていない気象要因

による地域間差異を十分に考慮できていない

ことで、推定結果が過大に評価されている可

能性も考えられる。 

最後に、モデル選択規準 AIC および BIC の

値を比較すると、空間エラーモデル（モデル

4）は、空間構造を考慮していないモデル

（固定効果モデル、ランダム効果モデル、線

形回帰モデル）よりも AIC および BIC の値が

小さくなり、分析データへの当てはまりが改

善されていることが分かる。このことから、

空間パネルデータ分析において、空間構造を

明示的にモデルに導入することが重要である

ことが分かる。 

6. シミュレーション分析 

市区町村別将来推計人口（2040 年、国立社

会保障・人口問題研究所）を用いて、低圧需

要電力量の簡易シミュレーションを実施した。

人口以外の説明変数は、2023 年の値を使用し、

モデルから得られる月ごとの予測値をもとに、

年間消費量（12 ヶ月計）を試算した。住宅ス

トック構造等の変化を考慮していない点につ

いては留意が必要である。本分析では、ラン

ダム効果を含む空間エラーモデルが最良なモ

デルとして選ばれたことから、毎月の予測値

を計算する際に、予測値の分散が最小となり、

不偏性を持つ、以下の BLUP（Best Linear 

Unbiased Predictor, Baltagi 2013, p.330）を用い

た。 

 

□□□□□ = □□□□□□□□ + □□□□□□□□ [□□□ ⨂□□]□□□□ (6) 

 
ここで、□□□ = □□□□ + □□□、□□は要素が全て 1 で

ある□ × 1ベクトル、□□は□ × □の単位行列、

□□□□は□□ × 1の残差ベクトルを表す。 

図 1 では、2023 年低圧需要電力量（実績値）

からの変化率を示している。その結果、首都

圏は微増傾向であるものの、一部の都市を除

く地方では減少傾向が顕著に見られ、首都圏

とその他の地域で低圧需要電力量の変化率に

大きな違いが見られ、都道府県レベルの分析

ではわからない、詳細な地域間差異が確認で

きる。 

7. まとめと今後の課題 

本研究では、関東地方の市区町村別電力需

要データを例に、空間計量経済学の知見に着

目し、空間構造を適切に考慮したモデルを用

いることの意義を検証した。 

モデルの推定結果から、空間エラーモデル

が最良なモデルとして選択された。空間エラ
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ーモデルは、誤差項の空間相関を考慮するこ

とで、モデルに加えることができない変数

（欠落変数、Omitted variables）によるバイア

スを緩和し、誤差項の空間相関を取り除くこ

とで、パラメータの推定結果や仮説検定につ

いて、理論的妥当性が保証されると考えられ

る。さらに、空間構造を考慮していないモデ

ル（固定効果モデル、ランダム効果モデル、

線形回帰モデル）と比較して、モデル選択規

準 AICと BICの値が小さくなり、分析データ

への当てはまりが改善されることが確認され

た。このことから、空間パネルデータ分析に

おいて、空間構造を明示的にモデルに導入す

ることが重要であることが分かった。その一

方で、今回の分析では、パラメータの符号条

件に問題が生じているモデルが散見された。

このことから、地域間差異を考慮する場合に、

統計的なモデル選択だけではなく、モデルの

解釈可能性などを踏まえたモデル選択が重要

であり、価格弾力性や所得弾力性を推定する

際に留意する必要がある。 

さらに、本研究では市区町村別将来推計人

口（2040 年）を用いて、低圧需要電力量の簡

易シミュレーションを実施した。その結果、

首都圏とその他の地域で、低圧需要電力量の

減少率に明確な違いが見られ、空間計量経済

学の知見を活用し空間構造を考慮することで、

市区町村レベルのシミュレーション分析への

適用可能性を確認した。 

今回の分析結果より、これまでの電力需要

分析では、全国もしくは都道府県レベルのデ

ータから、価格弾力性や所得弾力性の全国平

 

 
図１ 市区町村別将来推計人口（2040 年）を用いた場合の市町村別低圧電力需要の変化率 

（2023 年実績値との比較） 
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均を推定していたが、市区町村レベルのデー

タを活用し空間構造を考慮することで、弾力

性の推定やシミュレーションによる増減予測

について、より適切でより詳細な分析が可能

になると考えられる。 

今後の課題として、本研究では、分析期間

がコロナ禍であったことから、市区町村別需

要電力量の分析期間を延ばして分析を行った

り、市区町村別の地域間差異を捉えるような

説明変数（例：住宅ストック構成など）を追

加し、欠落変数による影響を緩和したりする

ことで、推定結果の精緻化を行っていく必要

がある。 
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付録A 空間内挿法を用いた市区町村別

月平均気温の推定 

本研究では、市区町村別の月平均気温を空

間内挿法で推定し、市区町村別需要電力量の
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分析に用いている。ここでは、月平均気温

（24ヶ月分）の推定方法を概説する。 

気温データが入手可能な、気象庁の観測所

は限られることから、本研究では、メッシュ

平年値（3次メッシュ）を活用する。地点□□
における月平均気温の観測値を□(□□)、同地点

のメッシュ平年値を□(□□)とし、 

 

□(□□) =  □(□□)□ + □(□□) 

 
 □□□(□□)□ = 0   

 
 □□□ □□(□□), □□□□□□ = □(□□□) 

 
というモデルを推定する。ここで、□□□は、地

点□□と地点□□の距離を表し、□(□□□)は、距離が

長くなるほど、小さな値をとる。この関数

□(□□□)はコバリオグラムもしくは共分散関数

などと呼ばれ、球型、指数型、ガウス型があ

る（詳細は瀬谷・堤  2014、村上  2022を参

照）。本研究では、3種類のコバリオグラム

の中から、月ごとに交差検証を行い、予測誤

差が小さいものを選択した。推定結果の例を

図2に示す。 

付録 B 最尤法の概要 

本分析では、パラメータを以下に示す対数

尤度関数を最大化することで推定を行ってい

る（Millo and Piras 2012, Millo 2022）。 

 
固定効果を含む場合の対数尤度関数 

 

ℓ(□)(□,□□□, □,□) 

= −□□2 log(2□□□□) + □ log|□□| + □ log|□□|
− 12□□□ □□ □[□□⨂(□□□ □□)]□□  

 

ここで、行列□□と行列□□は隣接行列□□を用

 

 
図２ 空間内挿法を用いた月別平均気温の推定結果の例（単位℃） 
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いて、□□ = □□ − □□□および□□ = □□ − □□□で
表される。さらに、□ × 1誤差ベクトル□□□は、

被説明変数□□の時間平均□□ = ∑ □□□□□□ /□と説明

変数□□の時間平均□□ = ∑ □□□□□□ /□を用いて、

□□□ = □□(□□ − □□) − (□□ − □□)□ = □□□□□ − □□□□と表

され、それらを要素とする□□ × 1ベクトルを

□□ □ = [□□□□ ⋯ □□□□ ]とする。このとき、パラメ

ータ□と□□□の最尤推定量は、以下の様に表さ

れる。 

 

  □□□□ = [□□ □Σ□□□□]□□□□ □Σ□□□□□ 
 

                         □□□□ = 1□□ □□ □Σ□□□□   
 

ここで、 

                           Σ = □□⨂(□□□ □□)□□ 

 

                           □ = □□⨂□□ 

 

                        □□ = □
□□□□□□⋮□□□
□ ,      □□ =

⎣⎢
⎢⎡
□□□□□□⋮□□□⎦⎥
⎥⎤ 

を表す。 

 
ランダム効果を含む場合の対数尤度関数 

 

ℓ(□)(□,□□□,□, □,□) 

= −□□2 log(2□□□□) − 12 log|Σ| + □ log|□□|
− 12□□□ □□Σ□□□ 

 
ここで、 

 

Σ = [□□⨂□□]□□[□(□□□□□ ⨂□□) + □□□][□□⨂□□□ ]□□ 

 

□ = □□□□□□ 

 

□ = □□ − □□ 

 

□ = □□⨂□□ 

 

□ = □
□□□□⋮□□
□ ,      □ = □

□□□□⋮□□
□ 

 

を表す。このとき、パラメータ□と□□□の最尤

推定量は、以下の様に表される。 

 

□□□□ = [□□Σ□□□]□□□□Σ□□□□ 

 

                         □□□□ = 1□□ □□Σ□□□ 

 


