

上席研究員 吉村 健司(左)

上席研究員 北内 義弘(右)

電力を支える

電力系統安定度解析プログラム

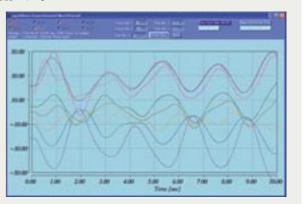
今や社会のインフラのひとつとして、あたかも空気のように利用されて いる電力。日本の停電率は諸外国に比べて低く、社会の安定と暮らしの安 心を支えている。その背景には、発電から消費に至るまでの電力系統を、 いかに安定に運用するかという不断の努力がある。それを強力に支援して いるのが、電力中央研究所が開発した「電力系統安定度解析プログラム」だ。

*** 情**緻な予測が電力の安定供給を支える

電気は備蓄することができない。そこで電力各社は、時 々刻々と変化する需要変動を、1日、1ヶ月あるいはもっと 長期間で予測し、供給体制を整備している。猛暑日などの 需要が急激に変化する時季も含め、需給のバランスのとれ た電力供給体制を整えているからこそ、電力の安定供給が 一年中絶えず保たれる。

発電所と消費地は、送電線、配電線、変電所などを通じ てつながっている。つまり、電力系統は、落雷など突然の 事故により、いずれかの電力設備が一時的に使用不能にな

ると広域に影響を及ぼしてしまうことがある。さらに、送 電には、熱容量、周波数、電圧、安定度という4つの制約 条件があり、どれ1つでも許容範囲から外れれば、停電や 事故につながる恐れがある。電力各社にとって、制約条件 のすべてをクリアできるかどうかの予測も不可欠なのだ。 このほか、定期点検のために発電設備が停止可能かといっ た予測も重要である。


これらの電力の安定供給をおびやかす多種多様な事象や 制約条件を克服するために、電中研は1980年に、「電力系統 安定度解析プログラム(CRIEPI's Power system Analysis

CPATによって送電の4つの制約が克服される 落雷事故など 発電所 輸送力 F:周波数による制約 : 熱容量による制約 S:安定度による制約 V:電圧による制約 雷圧計 発電量と消費量の周波数 つかがりあった電力系統 抵抗分により発熱(過負 雷力季亜が増えると電圧 荷)すると、制御装置が 全体は、一部がパランス のバランスが常にとれて を維持できなくなり停電 作動して停電につながる いないと周波数が乱れ電 をくずすと全体に影響を 安定供給できる範囲 気機器の故障につながる

大容量発電機を模擬した小型発電機(左)と計算結果画面(右)

アナログとデジタルの組み合せにより、現象を捉えた緻密なシミュレーションが可能となる。

Tool: CPAT)」を開発した。現在、わが国のすべての電力 会社で用いられ、電力の安定供給を根底から支えている。

シミュレーター実験でモデルの有効性を実証

CPATは汎用ソフトウエアで、潮流解析、過渡安定度解 析、定態安定度解析という3つの代表的なツールを柱にする。 さらに、各電力会社の環境やニーズに合わせた細かな補助 ツールも用意されている。将来予想される系統条件だけで なく、過去の故障時の電力動揺を再現させて、解析するこ ともできる。

CPATのシミュレーションモデル(計算式)は、電中研が オリジナルで開発し、改良もすべて自前で行っている。電 中研は実験設備を用いた現象解析でも高い技術力を誇り、 システム技術研究所には、世界でも類を見ない電力系統シ ミュレーターを備えている。100kVAの回転型模擬発電機 や変圧器、交流・直流変換器や送電線の模擬コイルなど、 実際の電力系統の要素を小型アナログモデルで再現し、先 の4つの制約条件下における電力系統の現象を模擬するこ とができる。将来必要となるであろう制御・保護技術が開 発され、解析ツールとなるモデルが構築されると、ここで の実験によって有効性を検証しており、信頼性に裏付けを 与えている。

プログラム改良と人材育成で更なる進化を

CPATは、毎年電力会社からのリクエストに基づいて改 良を重ねる。常に現場からのフィードバック情報と最新の 機能が盛り込まれるのだ。吉村健司氏は「電力系統はすべ てつながっているので、共通のツールを用いて安定性を保 障することが、日本全体の安心につながります。その体制 を支えているのがCPATなのです」と胸を張る。

CPATの威力を十分享受するためには、シミュレーショ ンの結果を判断する能力をユーザーが備えていなければな らない。このため、電中研では、ユーザーの育成にも力を 注ぐ。電中研では1983年から年2回、各電力会社の担当者 を対象に、基礎と応用コースに分けて各1週間の研修を開 催している。応用コースでは、小型アナログモデルも駆使 し、発電機の同期が保てなくなる脱調現象など、現実には 極めて起こりにくい現象も再現できる。

こうした一連の取り組みについて、北内義弘氏は、「停電 の防止はもちろん、何をすれば電力系統が不安定になるか が正確に分かれば、過剰な設備投資をせずに済み、経済面 でも貢献できます。諸外国に比べれば、日本は1桁以上停 電率が低いのですが、電力会社との二人三脚で、さらに盤 石なものにしたい」と語る。

