

酸化物燃料への乾式再処理技術の適用

音

第5章 酸化物燃料への乾式再処理技術の適用 目 次

原燃サイクル部 主任研究員 宇佐見 剛 原燃サイクル部 主任研究員 加藤 徹也

5 - 1	リチウム還元プロセスの原理とフローシート	41
5 - 2	アルゴンヌ国立研究所における研究開発の現状と課題	43
5 - 3	当所における研究開発の現状	45

宇佐見 剛(1995年入所) 入所以来、主として酸化物燃料の還元プロ セスの研究に従事。平成10年6月より英国 AEA Technology社に滞在し、TRUを用い た還元試験を実施中。これまでにMOXペレ ット等の還元を確認している。

加藤 徹也(1995年入所) 主として酸化物燃料の還元プロセスの研究 に従事。高燃焼度模擬ペレットの還元試験を 行うなど、リチウム還元工程およびLi₂Oの再 生工程における核分裂生成物の挙動について 研究を進めている。

第5章 酸化物燃料への乾式 再処理技術の適用

軽水炉から発生する使用済み酸化物燃料に乾式再処理 技術を適用するためには、酸化物を金属に転換する技術 を開発する必要がある。これが本章で述べる酸化物燃料 の還元技術である。

酸化物燃料の還元とは、ウラン、プルトニウムやマイ

ナーアクチニド(MA:ネプツニウム、アメリシウム、 キュリウム)と化学結合した酸素を取り除くことであり、 これらより酸素と結合しやすい金属、つまり酸化物の 生成自由エネルギー(G)の小さな金属を酸化物燃料と 接触させるプロセスが考えられている。

⁵⁻¹ リチウム還元プロセスの 原理とフローシート

5-1-1 還元剤と浴塩の選定

還元剤を選定する際には、酸素との結合のしやすさを 示す酸化物生成自由エネルギー(G)がその指標となる。 この酸化物生成自由エネルギーの温度依存性を、図5-1-1に示す。この図では、下にある元素の方が酸素と結合 しやすいことを示しており、アクチニド酸化物の還元剤 として考えられる金属は、リチウム(Li)、ベリリウム (Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロン チウム(Sr)、トリウム(Th)及び希土類の一部である。 これらの還元剤候補から、以下の様な検討を行った結果、 リチウムを第1候補として選定した。

トリウムは放射性物質であることにより対象外とした。 ベリリウムはα反応により中性子を放出し、さらにベリ リウム自体の毒性やプルトニウムと合金を形成しやすい ことにより対象から除外した。希土類元素については、 使用済燃料には有意量の希土類元素がFPとして含まれ ているために、電解精製以降の工程への負担が増加し、 高レベル廃棄物量も増加するという観点から適していな いと判断した。同様にストロンチウムもFPの除染の観 点から除外した。次に、マグネシウム(Mg)は十分な還 元能力を持つが、塩化物が不安定であるために、Puが

図5-1-1 酸化物の生成自由エネルギー (この図ではより下側の酸化物が安定。即ち、より上側の 酸化物は下側の金属元素によって還元される。図中で最 も還元されやすい酸化物はNpO₂、最も強い還元剤はYと 言える。)

MgCl₂中で塩化物に転換され還元に用いる浴塩との分離 が難しいことから検討の対象外とした。

以上と比べて、リチウムとカルシウムは欠点が少な い還元剤である。リチウムの酸化物(Li₂O)の生成自由エ ネルギーは希土類とアクチニドの間にあり、理想的に は希土類とアクチニドの分離が可能である。金属リチ ウムの融点は180、塩化物の融点も605 と、他の還 元剤候補の金属、塩化物の融点に比べて低い。

一方のカルシウムを用いた場合には、カルシウムの酸 化物(CaO)の生成自由エネルギーが希土類よりも小さく、 希土類まで還元してしまうために電解精製の負荷は大き くなる。さらに、カルシウムの融点839 、塩化カルシ ウム(CaCl₂)の融点772 で、運転温度が高くなる。ア ルゴンヌ国立研究所(ANL)ではカルシウムを経てリチ ウムを最有力候補として開発した経緯があり、当所でも 上記のような評価結果をふまえて、リチウムを第一候補 として還元プロセスの開発に着手することとした。

還元剤の選定においては、一緒に用いる浴塩との整合 性も重要である。浴塩は還元の際に反応生成物を溶解・ 除去し反応を促進する。浴塩としては、揮発性、吸湿性 ができるだけ低いこと、使用済み燃料からの放射線によ り(、n)反応を生じないこと、等が条件となり、塩化 物が適していると判断した。

5-1-2 リチウム還元のプロセスフロー

リチウム還元のフローシートを図5-1-2に示す。リチ ウム還元プロセスは、

ウランと超ウラン元素の還元 金属製品の分離・回収 リチウム金属と塩化リチウム(LiCl)の再生 の3つの工程で構成される。

ウランと超ウラン元素の還元

使用済燃料を剪断・脱被覆し、塩化リチウムを浴塩と して、金属リチウムで次式のようにアクチニドを還元す る。

 $AnO_2 + 4Li$ $An + 2Li_2O$

 $(AnO_2: アクチニド酸化物、An: アクチニド元$ 素、Li:金属リチウム、Li₂O:酸化リチウム)

塩化リチウムに溶解した金属リチウムがアクチニドを 還元し、還元で消費された分は還元の過程を通じて塩化 リチウム中の飽和溶解度以上に存在する金属リチウムに よって補われる。反応生成物のうち、金属はルツボの底 に沈澱し、酸化リチウムは溶融塩に溶解する。使用済燃 料に含まれるFPのうち、貴金属(Noble Metal: NM)は アクチニドと同様に以下の反応で金属に転換され、ルツ ボの底に沈澱する。

 $NMOx + 2xLi NM + xLi_2O$

(NMOx:貴金属酸化物、NM:貴金属、Li:金属リチウム、Li₂O:酸化リチウム)

アルカリ金属(Alkali Metal: AL)FPは塩化物の生成 自由エネルギーがリチウムより小さく、即ちリチウムよ りも塩化物になりやすいため、塩化リチウムとの間で以 下の反応を起こし塩化物に転換される。

図5-1-2 リチウム還元のフローシート (図中Mはリチウムで還元される金属、REは希土類元素、NMは貴金属元素)

 $ALOx + 2xLiCl ALCl_{2x} + xLi_2O$

(ALOx:アルカリ酸化物、ALCI_{2x}:アルカリ
塩化物、LiCI:塩化リチウム、Li₂O:酸化リチ
ウム)

アルカリ土類(Alkaline Earth: AE)FPと希土類 (Rare Earth: RE)FPは元素によって挙動が異なると 考えられる。塩化物の生成自由エネルギーが小さい元素 はアルカリFPと同じ反応で塩化物に転換され、塩化物 が塩化リチウムよりも不安定な元素は酸化物のまま存在 する。また、希土類FPの一部は、アクチニドの還元で 生じた酸化リチウムと以下の様に反応し、複合酸化物を 形成する事も考えられる。

 $RE_2O_3 + Li_2O = 2LiREO_2$

(RE₂O₃:希土類酸化物、Li₂O:酸化リチウム、
LiREO₂:リチウム希土類複合酸化物)

現在これらの反応を詳細に調べるためにアクチニド元素 や模擬使用済み燃料を用いて研究を進めている。

金属製品の分離・回収

還元工程の製品は酸化物を含む浴塩から分離し、乾式 再処理の電解精製槽に移送する。酸素が電解精製工程に 持ち込まれるとアクチニドが再び酸素と結合し、アクチ ニド酸化物として沈澱してしまうため、生成した金属を 酸化物を含む浴塩から分離することが必要になる。現 在考えているプロセスでは、ステンレスのメッシュで できたバスケットに使用済酸化物燃料を入れて還元す る。還元で生成したアクチニド金属は、このバスケッ ト中に沈澱するのでバスケットごと引き上げる。浴塩 の一部は、アクチニド金属やバスケットに付着して随 伴する。付着・随伴した塩は、バスケットを新たな溶 融塩化リチウムに浸して洗い流す。

リチウム金属と塩の再生

の還元工程で使用された浴塩や、 のメッシュバ スケット洗浄に用いた浴塩には、還元で生成した酸化 リチウムが溶解している。プロセスを経済的にし、且 つ廃棄物を低減するためには、この使用済みの浴塩か ら酸化リチウムを除去し、浴塩をリサイクルしなけれ ばならない。浴塩からの酸化リチウムの除去には電解 を用いる。電解による再生プロセスでは、酸化リチウ ムが溶解した塩化リチウムに電極を挿入し、

Li₂O Li + 1/2O₂

或いは

Li₂O + 1/2C Li + 1/2CO₂ といった反応により、塩化リチウム中の酸化リチウム を分解し還元剤であるリチウム自体も再生する。

^{5・2} アルゴンヌ国立研究所における 研究開発の現状と課題

米国のアルゴンヌ国立研究所(ANL)では、酸化物の 還元プロセスについて多くの研究開発を行っているが、 公開されている文献があまり多くはなく、且つ近年は さらに減少する傾向にある。本節では公開されている 文献をもとに、

ウランと超ウラン元素の還元

金属製品の分離・回収

リチウム金属と塩化リチウム(LiCI)塩の再生 以上3工程のそれぞれについて、研究開発の現状をま とめ、課題を摘出する。

5-2-1 ウランと超ウラン元素の還元

ウランと超ウラン元素の還元に関してANLが発表し た、ビーカー規模の試験の還元率は酸化ウラン(UO₂)が 100%、酸化プルトニウム(PuO₂)と酸化キュリウム (CmO₂がそれぞれ99%以上、酸化アメリシウム(AmO₂) が86%-99%、酸化ネプツニウム(NpO₂)が95%-99%とな っている [~]。試験に用いた物質量はどの文献にも記述 されていない。これらの試験では塩中の超ウラン元素 濃度のみが測定されており、装荷したウランと超ウラ ン元素のうち塩中で検出されなかった部分が還元された とする値である。

また、ANLでは酸化物500g規模の試験 を経て最終 的に工学規模試験装置を製作し、10kgの模擬使用済燃 料を装荷した試験を行った 。工学規模の還元槽は高さ 約1.2m、直径約1mで、内部に高さ約0.7m、直径約 0.4mのルツボを備えている。この試験ではアメリシウ ムの約1%とネプツニウムの約3%が塩中に検出された こと、ウラン・プルトニウムの塩中濃度が検出限界以下 だったことなどが示されている。

以上のとおりANLでは工学規模試験まで行われ、高 い還元率が示されているが、分析が行われたのは塩中の 元素濃度に限られている。つまり実際にどの程度還元さ れたのかは明らかでなく、この還元法が成立することに 関しては十分な検証が必要である。さらに、実燃料に適 用する場合の還元条件を把握するためには、焼結模擬ペ レット(使用済燃料を模して焼結したペレット)や実使用 済燃料を用いた試験が必要となる。

5-2-2 金属製品の分離・回収

ANLではビーカー試験の結果から、500 では製品が

元素	組成(wt.%)	元素	組成(wt.%)
U	94.725	Pu	1.0186
Np	0.071935	Am	0.059203
Cm	0.010185		
Rb	0.047745	Gd	0.024827
Cs	0.36795	Zr	0.50227
Sr	0.11268	Mo	0.48381
Ba	0.23936	Tc	0.10631
Y	0.062386	Ru	0.33803
La	0.17506	Rb	0.05793
Ce	0.34249	Pd	0.24
Pr	0.15915	Ag	0.012095
Nd	0.58248	Cd	0.020371
Pm	0.0044562	Sn	0.014005
Sm	0.11713	Se	0.0082757
Eu	0.023554	Те	0.072572

表5-2-1 使用済軽水炉燃料の組成

(PWR、燃焼度48000MWD/t、4年冷却を前提にORIGEN-2で計算した値)

微粉末状に塩の底部に浮遊し、750 では最大3mmの 金属球となって沈澱したと述べている。また、650 で100meshのフィルターを通すことで、ほとんどの塩を この沈澱から除去できたと述べている。500g規模の試 験では、製品を純粋な塩化リチウムで2回洗浄すること で酸化リチウムの随伴を防いだ。以上の成果は、還元 された製品が細かい目のバスケットによってある程度回 収できることを示しているが、粒状金属の回収率や粒の 生成のメカニズムは不明であり、実用プロセスとして確 立するためにはこれを明らかにする必要がある。

5-2-3 リチウム金属と塩化リチウムの再生

電解によるリチウム金属と塩化リチウムの再生では、 陽極が650 という高温で反応性の高い酸素と接触する ため、その腐蝕が問題となる。このため、ANLにおけ る試験では陽極材料に重点が置かれ、炭素や金属などが 試された。炭素を陽極に用いた場合、陽極で生成した二 酸化炭素が塩化リチウム中の酸化リチウムと反応して炭 酸リチウム(Li₂CO₃)を形成する可能性があることを指摘 している 。また炭素陽極の表面では、粒界付近のみが 反応して陽極からはくりした炭素の粉末が塩中に拡散し てしまう。一方、白金-ロジウム合金を陽極に用いて行っ た模擬 FPを含む模擬リサイクル塩中の酸化リチウムの 電解試験では、FPのうちのテルルとヨウ素が陽極表面 に析出して不導体膜を形成し、電解が進行しなくなる現 象が観察されている 。以上のように、酸化リチウムの 電解によるリチウムと塩化リチウムの再生に関しては、 電極材料や装置構成それ自体が課題となっている。工学 規模の試験では電極材料として白金-ロジウムが選ばれた が、前述のテルルやヨウ素を含まない試験であったにも 関わらず、金属リチウムは得られていない。多くの材料 を検討対象として模擬 FPを含む系で試験を行っている が、装置の最適化はまだ図られていない。

⁵⁻³ 当所における研究開発の 現状と今後の展開

これまでに挙げた開発課題を解決するために、電中研 でも平成7年より研究に着手した。この節では、電中研 における研究開発の現状と今後の展開について述べる。

はじめに、アクチニド酸化物の還元条件を評価する上 で重要な、浴塩中の酸化リチウムの生成自由エネルギー について述べる。図5-3-1に、浴塩中に溶解する酸化リ チウムの電気分解を行い、その際の分解電圧から計算し た生成自由エネルギーを、酸化リチウムの濃度ごとに示 す。酸化リチウムの生成自由エネルギーは、濃度が低い ほど小さくなる(図中、下方に移動する)ことがわかる。 図5-3-1に酸化プルトニウム(PuO、Pu₂O₃)および酸化ア メリシウム(Am₂O₃)の生成自由エネルギーもあわせて示 す。酸化リチウムの生成自由エネルギーは、650 では、 酸化リチウム濃度がおよそ10mol%以下でPuOより、5 mol%以下でAm₂O₃よりそれぞれ小さくなる(図中、下 にある)。このことから、酸化物の還元にともない発生 する酸化リチウムの濃度を、5 mol%以下に抑えること により、アクチニドの酸化物を還元できると考えられる。

この結果をもとに、現在、アクチニド酸化物の還元試 験を行っており、最近の研究では、プルトニウム酸化物 (PuO₂)の金属への還元が確認された。アクチニド酸化 物の還元試験の結果については、今後順次報告する予定 である。

図5-3-1 酸化物の生成自由エネルギー

次に、酸化ウラン(UO₂)の還元試験 について述べる。 この試験は、精度の高い化学分析を用いて正確に還元率 を測定するとともに、還元の結果得られる製品の回収法 を検討するために行った。この試験では、平均粒径が約 25 µ mの酸化ウラン粉末を用い、27gの酸化ウラン粉末 を420gの塩化リチウム中に入れ、650 で10時間、金 属 Li と反応させた。分析は以下の2通りの方法で行い、 還元率を求めた。

還元された金属ウランは塩酸に溶解するが未還元の 酸化ウランは溶解しない。この酸への溶解性の差を利 用し、塩酸に溶解したウラン量から還元率を求める方 法。

還元で生じる酸化リチウムは塩中に均質に溶解する。 この酸化リチウムを含む塩を水に溶かし、生成した水 酸化リチウムの中和滴定によって、塩中の酸化リチウ ム濃度から還元率を求める方法。

この二つの方法で測定した還元率は良く一致し、いず れも約97%だった。残りの3%についても分析操作の際 に再酸化された可能性が高いと考えられ、これにより酸 化ウランがリチウムにより還元できることを実験で確認 した。

製品の回収方法を検討する際に重要となるのは製品の 形状であるが、この還元試験では**図**5-3-2に示す製品が 得られた。これまでの研究と異なり、製品は細かい粒子 の集まった凝集体をなしており、大きさも最大で1 mm 程度だった。そこで次に、凝集体の形成がリチウムとの 反応の過程や反応で生じた酸化リチウムとの相互作用で 起こるか、他の原因で起こるのかを調べるための試験を 行った。

試験ではまず、還元試験で生成した金属ウランを破砕 して、還元前の酸化ウランと同程度の大きさの金属粉末 にした。この粉末(図5-3-3)を純粋な塩化リチウムに入 れ、金属リチウムも酸化リチウムも存在しない条件で、 温度を550 から700 まで変化させて24時間放置し、 形状の変化を顕微鏡で観察した。550 では変化が起こ らず、製品は原料と同じ形状であった。これに対し 650 では、製品は還元時と同様に凝集体を形成し、大

図5-3-2 還元で得られた生成物

図5-3-3 還元試験で得られた金属ウランを 粉末にしたもの

きさも最大で3mm程度に達した(図5-3-4)。これらの ことから、凝集が温度に依存する現象であることが分か る。この凝集体の結合は強く、水中で超音波洗浄を行っ ても分離しなかった。この凝集は金属を塩中に放置した だけで生じたものであり、還元の進行に伴う成長ではな いことも分かった。さらに、700 で行った試験では、

図5-3-4 650 で保持後の生成物

ルツボ内に設置したステンレスのメッシュに腐蝕が起こ り、これが破損した。また、還元試験においては、金属 ウランがルツボに強く付着する傾向が観察された。

以上の実験結果と、ウランの融点(約1130)、およ びウラン-鉄合金の融解温度(約720)を考え併せると、 ウランの凝集は鉄との部分的な合金化が原因である可能 性が高いと考えられる。

リチウム還元プロセスにおけるFPの挙動を明らかに するための試験も行っている。特に希土類元素について は、浴塩中で希土類酸化物と酸化リチウムの反応試験を 行い、希土類はリチウムと複合酸化物(LiREO₂)を形成 すること、および浴塩中の酸化リチウム濃度の増大にと もない、希土類酸化物の溶解度が大きくなることが確認 された。希土類酸化物を含んだ酸化ウランの還元試験で は、実際に有為な量の希土類元素が浴塩中に溶出するこ とが確かめられた。

今後は、アクチニド酸化物の還元条件やFPの挙動を 踏まえて、最適なリチウム還元プロセスの構築に取り組 む。